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T his book reprints my Mathematical Games columns from the 
1978 and 1979 issues of Scientific American Magazine. It is 

t h e  fourteenth such collection, and I have one more to go be- 
fore running out of columns. As in previous anthologies, ad- 
denda to the chapters update the material with information 
supplied by faithful readers, and by papers published after 
the columns were written. In two cases-a column c)n pi and 
poetry, and one on minimal sculpture-there was so much to 
add that I have written new chapters which appear here for 
the first time. 

The book is dedicated to my friend Douglas Hofstadter, 
whom I first met when he was seeking a publisher for his 
classic Godel, Escher, Bach, and who later became my suc- 
cessor at  Scientific American. I had the privilege of r~eviewing 
GEB in a column that is reprinted here. 



~ k t e ,  Brown, an d 
1 Music Fracta 

"For when there are no words [accompanying music] it is very difficult 
to recognize the meaning of the harmony and rhythm, or to see that any wor- 
thy object is imitated by them." 

-PLATO, Laws, Book I1 

P lato and Aristotle agreed that in some fashion all the fine arts, 
including music, "imitate" nature, and from their day until the - late 18th century "imitation" was a central concept in west- 
ern aesthetics. It is obvious how representational painting and 
sculpture "represent," and how fiction and the stage copy life, 
but in what sense does music imitate? 

By the mid-18th century philosophers and critics were 
still arguing over exactly how the arts imitate and .whether 
the term is relevant to music. The rhythms of music may be 
said to imitate such natural rhythms as heartbeats, walking, 
running, flapping wings, waving fins, water waves, the peri- 
odic motions of heavenly bodies and so on, but this does not 
explain why we enjoy music more than, say, the souind of ci- 



cadas or the ticking of clocks. Musical pleasure derives mainly 
from tone patterns, and nature, though noisy, is singularly de- 
void of tones. Occasionally wind blows over some object to 
produce a tone, cats howl, birds warble, bowstrings twang. A 
Greek legend tells how Hermes invented the lyre: he found a 
turtle shell with tendons attached to it that produced musical 
tones wlhen they were plucked. 

Above all, human beings sing. Musical instruments may 
be said to imitate song, but what does singing imitate? A sad, 
happy, angry or serene song somehow resembles sadness, joy, 
anger or serenity, but if a melody has no words and invokes 
no speci~al mood, what does it copy? It is easy to understand 
Plato's mystification. 

There is one exception: the kind of imitation that plays a 
role in "program music." A lyre is severely limited in the nat- 
ural sounds it can copy, but such limitations do not apply to 
sympho~~ic or electronic music. Program music has no diffi- 
culty featuring the sounds of thunder, wind, rain, fire, ocean 
waves and brook murmurings; bird calls (cuckoos and crow- 
ing coclrs have been particularly popular), frog croaks, the 
gaits of animals (the thundering hoofbeats in Wagner's Ride 
of the Valkyries), the flights of bumblebees; the rolling of trains, 
the clang of hammers; the battle sounds of marching soldiers, 
clashing: armies, roaring cannons and exploding bombs. 
S1aughtc.r on Tenth Avenue includes a pistol shot and the wail 
of a police-car siren. In Bach's Saint Matthew Passion we hear 
the earthquake and the ripping of the temple veil. In the Al- 
pine Syvnphony by Richard Strauss, cowbells are imitated by 
the shaking of cowbells. Strauss insisted he could tell that a 
certain female character in Felix Mottl's Don Juan had red 
hair, and he once said that someday music would be able to 
distinguish the clattering of spoons from that of forks. 

Such imitative noises are surely a trivial aspect of music 
even when it accompanies opera, ballet or the cinema; be- 
sides, siuch sounds play no role whatsoever in "absolute mu- 
sic," music not intended to "mean" anything. A Platonist might 
argue th~at abstract music imitates emotions, or beauty, or the 
divine harmony of God or the gods, but on more mundane lev- 
els musilc is the least imitative of the arts. Even nonobjective 
paintings resemble certain patterns of nature, but nonobjec- 
tive music resembles nothing except itself. 

Since the turn of the century most critics have agreed 
that "imitation" has been given so many meanings (almost all 



are found in Plato) that it has become a useless synonym for 
"resemblance." When it is made precise with referenlce to lit- 
erature or the visual arts, its meaning is obvious and trivial. 
When it is applied to music, its meaning is too fuzzy to be 
helpful. In this chapter we take a look at a surprising discov- 
ery by Richard F. Voss, a physicist from Minnesota who joined 
the Thomas J. Watson Research Center of the International 
Business Machines Corporation after obtaining his 1Ph.D. at 
the University of California at  Berkeley under the guidance 
of John Clarke. This work is not likely to restore "innitation" 
to the lexicon of musical criticism, but it does suggest a cu- 
rious way in which good music may mirror a subtle statistical 
property of the world. 

The key concepts behind Voss's discovery are what math- 
ematicians and physicists call the spectral density (or power 
spectrum) of a fluctuating quantity, and its "autocorrelation." 
These deep notions are technical and hard to understand. Be- 
noit Mandelbrot, who is also at  the Watson Research Center, 
and whose work makes extensive use of spectral densities and 
autocorrelation functions, has suggested a way of avoiding them 
here. Let the tape of a sound be played faster or slower than 
normal. One expects the character of the sound to change 
considerably. A violin, for example, no longer sounds like a 
violin. There is a special class of sounds, however, that be- 
have quite differently. If you play a recording of such a sound 
at a different speed, you have only to adjust the volume to 
make it sound exactly as before. Mandelbrot calls sucl~ sounds 
"scaling noises." 

By far the simplest example of a scaling noise is what in 
electronics and information theory is called white noise (or 
"Johnson noise"). To be white is to be colorless. White noise 
is a colorless hiss that is just as dull whether you play it faster 
or slower. Its autocorrelation function, which measures how 
its fluctuations at  any moment are related to previous fluctua- 
tions, is zero except at  the origin, where of course it must be 
1. The most commonly encountered white noise is the ther- 
mal noise produced by the random motions of electrons through 
an electrical resistance. It causes most of the static in a radio 
or amplifier and the "snow" on radar and television screens 
when there is no input. 

With randomizers such as dice or spinners it is easy to 
generate white noise that can then be used for composing a 
random "white tune," one with no correlation between any 
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two notes. Our scale will be one octave of seven white keys 
on a piano: do, re, me, fa, so, la, ti. F a  is our middle fre- 
quency. Now construct a spinner such as the one shown at 
the left in Figure 1. Divide the circle into seven sectors and 
label them with the notes. It matters not at all what arc lengths 
are assigned to these sectors; they can be completely arbi- 
trary. On the spinner shown, some order has been imposed 
by giving fa the longest arc (the highest probability of being 
chosen) and assigning decreasing probabilities to pairs of notes 
that are equal distances above and below fa. This has the ef- 
fect of clustering the tones around fa. 

To produce a "white melody" simply spin the spinner as  
often as  you like, recording each chosen note. Since no tone 
is related in any way to the sequence of notes that precedes 
it, the result is a totally uncorrelated sequence. If you like, 
you can divide the circle into more parts and let the spinner 
select n~otes that range over the entire piano keyboard, black 
keys as well as  white. 

To ~nake  your white melody more sophisticated, use an- 
other spinner, its circle divided into four parts (with any pro- 
portions you like) and labeled 1, 112, 114 and 118 so that you 
can assign a full, a half, a quarter or an eighth of a beat to 
each tone. After the composition is completed, tap it out on 
the piano. The music will sound just like what it is: random 
music of the dull kind that a two-year-old or a monkey might 
produce by hitting keys with one finger. Similar white music 
can be lbased on random number tables, or the digits in an 
irrational number. 

A rrlore complicated kind of scaling noise is one that is 
sometimes called Brownian noise because it is characteristic 
of Browinian motion, the random movements of small particles 
suspended in a liquid and buffeted by the thermal agitation of 
molecules. Each particle executes a three-dimensional "ran- 
dom walk," the positions in which form a highly correlated 
sequencle. The particle, so to speak, always "remembers" where 
it has been. 

When tones fluctuate in this fashion, let us follow Voss 
and call it Brownian music or brown music. We can produce 
it easily with a spinner and a circle divided into seven parts 
as  befor'e, but now we label the regions, as  shown at the right 
in Figure 1, to represent intervals between successive tones. 
These step sizes and their probabilities can be whatever we 
like. On the spinner shown, plus means a step up the scale of 



FIGURE 1 Spinners for white music (left) and brown music (right) 
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one, two or three notes and minus means a step dourn of the 
same intervals. 

Start the melody on the piano's middle C, then use the 
spinner to generate a linear random walk up and down the 
keyboard. The tune will wander here and there, ,and will 
eventually wander off the keyboard. If we treat the ends of 
the keyboard as  "absorbing barriers," the tune ends when we 
encounter one of them. We need not go into the ways in which 
we can treat the barriers as reflecting barriers, allowing the 
tune to bounce back, or as  elastic barriers. To make the bar- 
riers elastic we must add rules so that the farther the tone 
gets from middle C, the greater is the likelihood it will step 
back toward C, like a marble wobbling from side to side as  it 
rolls down a curved trough. 

As before, we can make our brown music more sophisti- 
cated by varying the tone durations. If we like, we can do this 
in a brown way by using another spinner to give not the dura- 
tion but the increase or decrease of the duration--another 
random walk but one along a different street. The result is a 
tune that sounds quite different from a white tune because it 
is strongly correlated, but a tune that still has little alesthetic 
appeal. It simply wanders up and down like a drunk weaving 
through an alley, never producing anything that resembles good 
music. 

If we want to mediate between the extremes of white and 
brown, we can do it in two essentially different ways. The 
way chosen by previous composers of "stochastic music" is to 
adopt transition rules. These are rules that select each note 
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on the b'asis of the last three or four. For example, one can 
analyze Bach's music and determine how often a certain note 
follows, say, a certain triplet of preceding notes. The random 
selectiori of each note is then weighted with probabilities de- 
rived from a statistical analysis of all Bach quadruplets. If 
there are certain transitions that never appear in Bach's mu- 
sic, we add rejection rules to prevent the undesirable transi- 
tions. The result is stochastic music that resembles Bach but 
only superficially. It  sounds Bachlike in the short run but ran- 
dom in the long run. Consider the melody over periods of four 
or five notes and the tones are strongly correlated. Compare 
a run of five notes with another five-note run later on and you 
are back to white noise. One run has no correlation with the 
other. Almost all stochastic music produced so far has been 
of this sort. It sounds musical if you listen to any small part 
but random and uninteresting when you try to grasp the pat- 
tern as  a whole. 

Voss's insight was to compromise between white and 
brown input by selecting a scaling noise exactly halfway be- 
tween. 1.n spectral terminology it is called llf noise. (White 
noise has a spectral density of llf O ,  brownian noise a spectral 
density 13f llf 2.  In "one-over-f" noise the exponent off is 1 or 
very close to 1.) Tunes based on llf noise are moderately cor- 
related, not just over short runs but throughout runs of any 
size. It turns out that almost every listener agrees that such 
music is much more pleasing than white or brown music. 

In electronics llf noise is well known but poorly under- 
stood. It is sometimes called flicker noise. Mandelbrot, whose 
book Th!e Fractal Geometry of Nature (W. H. Freeman and 
Company, 1982) has already become a modern classic, was 
the first to recognize how widespread llf noise is in nature, 
outside of physics, and how often one encounters other scal- 
ing fluctuations. For example, he discovered that the record 
of the a:nnual flood levels of the Nile is a llf fluctuation. He 
also investigated how the curves that graph such fluctuations 
are related to "fractals," a term he invented. A scaling fractal 
can be defined roughly as any geometrical pattern (other than 
Euclideian lines, planes and surfaces) with the remarkable 
property that no matter how closely you inspect it, it always 
looks the same, just as  a slowed or speeded scaling noise al- 
ways so'unds the same. Mandelbrot coined the term fractal 
because he assigns to each of the curves a fractional dimen- 
sion greater than its topological dimension. 



Among the fractals that exhibit strong regularity the best- 
known are the Peano curves that completely fill a finite region 
and the beautiful snowflake curve discovered by the Swedish 
mathematician Helge von Koch in 1904. The Koch snowflake 
appears in Figure 2 as the boundary of the dark "sea" that 
surrounds the central motif. (For details on the snowflake's 
construction, and a discussion of fractals in general, see 
Chapter 3 of my Penrose Tiles to Trapdoor Ciphers (W. H .  
Freeman, 1989). 

White, Brown, and Fractal Music 

FIGURE 2 Mandelbrot's Peano-snowflake as  it appeared on the 
cover of Scientific American (April, 1978). The curve was drawn by a 
program written by Sigmund Handelman and Mark Laff. 
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The most interesting part of Figure 2 is the fractal curve 
that forms the central design. It was discovered by Mandel- 
brot and published for the first time as  the cover of Scientific 
American's April 1978 issue. If you trace the boundary be- 
tween 1,he black and white regions from the tip of the point of 
the star a t  the lower left to the tip of the point of the star at  
the lower right, you will find this boundary to be a single curve. 
It is the third stage in the construction of a new Peano curve. 
At the limit this lovely curve will completely fill a region 
boundeld by the traditional snowflake! Thus Mandelbrot's curve 
brings 'together two pathbreaking fractals: the oldest of them 
all, Giuseppe Peano's 1890 curve, and Koch's later snow- 
flake! 

The secret of the curve's construction is the use of line 
segments of two unequal lengths and oriented in 12 different 
directions. The curve is much less regular than previous Peano 
curves and therefore closer to the modeling of natural phe- 
nomena, the central theme of Mandelbrot's book. Such natu- 
ral fornns as the gnarled branches of a tree or the shapes of 
flickering flames can be seen in the pattern. 

At the left in Figure 3 is the first step of the construction. 
A croolced line of nine segments is drawn on and within an 
equilateral triangle. Four of the segments are then divided 

FIGURE 3 The first two steps in constructing Benoit Mandelbrot's 
Peano-snowflake curve 



into two equal parts, creating a line from A to B that consists 
of 13 long and short segments. The second step replaces each 
of these 13 segments with a smaller replica of the crooked 
line. These replicas (necessarily of unequal size) are oriented 
as is shown inside the star at  the right in the illustration. A 
third repetition of the procedure generates the curve in Fig- 
ure 2. (It belongs to a family of curves arising from William 
Gosper's discovery of the "flow-snake," a fractal pictured in 
Chapter 3 of my above cited book.) When the constru~ction is 
repeated to infinity, the limit is a Peano curve that totally fills 
a region bordered by the Koch snowflake. The Peano curve 
has the usual dimension of 2,  but its border, a scaling fractal 
of infinite length, has (as is explained in Mandelbrot's book) a 
fractal dimension of log 4llog 3,  or 1.26 18. . . . 

Unlike these striking artificial curves, the fractals that 
occur in nature--coastlines, rivers, trees, star clustering, 
clouds and so on-are so irregular that their self-similarity 
(scaling) must be treated statistically. Consider the pirofile of 
the mountain range in Figure 4, reproduced from Mandel- 
brot's book. This is not a photograph, but a computer-gener- 
ated mountain scene based on a modified Brownian noise. Any 
vertical cross section of the topography has a prof~le that 
models a random walk. The white patches, representing water 
or snow in the hollows below a certain altitude, were added 
to enhance the relief. 

The profile at  the top of the mountain range is a scaling 
fractal. This means that if you enlarge any small portion of it, 
it will have the same statistical character as the line you now 
see. If it were a true fractal, this property would continue 
forever as  smaller and smaller segments are enlarged, but of 
course such a curve can neither be drawn nor appear in na- 
ture. A coastline, for example, may be self-similar when viewed 
from a height of several miles down to several feet, but below 
that the fractal property is lost. Even the Brownian motion of 
a particle is limited by the size of its microsteps. 

Since mountain ranges approximate random walks, one 
can create "mountain music" by photographing a mountain 
range and translating its fluctuating heights to tones that fluc- 
tuate in time. Villa Lobos actually did this using mountain 
skylines around Rio de Janeiro. If we view nature statically, 
frozen in time, we can find thousands of natural curves that 
can be used in this way to produce stochastic music. Such 
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FIGURE 4 A modified Brownian landscape generated by a com- 
puter program 

music is usually too brown, too correlated, however, to be 
interesting. Like natural white noise, natural brown noise may 
do well enough, perhaps, for the patterns of abstract art but 
not so well as  a basis for music. 

When we analyze the dynamic world, made up of quan- 
tities constantly changing in time, we find a wealth of fractal- 
like fluctuations that have llf spectral densities. In his book 
Mandelbrot cites a few: variations in sunspots, the wobbling 
of the earth's axis, undersea currents, membrane currents in 
the nervous system of animals, the fluctuating levels of rivers 
and so on. Uncertainties in time measured by an atomic clock 
are llf: the error is 10-l2 regardless of whether one is mea- 
suring an error on a second, minute or hour. Scientists tend 
to overlook llf noises because there are no good theories to 
account for them, but there is scarcely an aspect of nature in 
which they cannot be found. 



T. Musha, a physicist at  the Tokyo Institute of Technol- 
ogy, discovered that traffic flow past a certain spot or1 a Jap- 
anese expressway exhibited llf fluctuation. In a more star- 
tling experiment, Musha rotated a radar beam emanatiing from 
a coastal location to get a maximum variety of landscape on 
the radar screen. When he rotated the beam once, vairiations 
in the distances of all objects scanned by the beam produced 
a Brownian spectrum. But when he rotated it twice and then 
subtracted one curve from the other the resulting curve-rep- 
resenting all the changes of the scene-was close to llf. 

We are now approaching an understanding of Voss's dar- 
ing conjecture. The changing landscape of the world (or, to 
put it another way, the changing content of our total experi- 
ence) seems to cluster around llf noise. It is certainly not 
entirely uncorrelated, like white noise, nor is it as strongly 
correlated as brown noise. From the cradle to the grave our 
brain is processing the fluctuating data that comes to it from 
its sensors. If we measure this noise at  the peripheries of the 
nervous system (under the skin of the fingers), it tendls, Man- 
delbrot says, to be white. The closer one gets to the brain, 
however, the closer the electrical fluctuations approilch llf. 
The nervous system seems to act like a complex filtering de- 
vice, screening out irrelevant elements and processing only 
the patterns of change that are useful for intelligent be:havior. 

On the canvas of a painting, colors and shapes are static, 
reflecting the world's static patterns. Is it possible, Mandel- 
brot asked himself many years ago, that even completely non- 
objective art, when it is pleasing, reflects fractal patterns of 
nature? He is fond of abstract art, and maintains that ithere is 
a sharp distinction between such art that has a fractal base 
and such art that does not, and that the former type is widely 
considered the more beautiful. Perhaps this is why photogra- 
phers with a keen sense of aesthetics find it easy to take pic- 
tures, particularly photomicrographs, of natural patterns that 
are almost indistinguishable from abstract expression:ist art. 

Motion can be added to visual art, of course, in tlhe form 
of the motion picture, the stage, kinetic art and the dance, 
but in music we have meaningless, nonrepresentational tones 
that fluctuate to create a pattern that can be appreciated only 
over a period of time. Is it possible, Voss asked himself, that 
the pleasures of music are partly related to scaling noise of 11 
f spectral density? That is, is this music "imitating" the llf 
quality of our flickering experience? 



That may or may not be true, but there is no doubt that 
music of almost every variety does exhibit llf fluctuations in 
its chai~ges of pitch as well as in the changing loudness of its 
tones. 'Voss found this to be true of classical music, jazz and 
rock. H[e suspects it is true of all music. He was therefore not 
surprised that when he used a llf flicker noise from a transis- 
tor to generate a random tune, it turned out to be more pleas- 
ing than tunes based on white and brown noise sources. 

Figure 5, supplied by Voss, shows typical patterns of 
white, llf and brown when noise values (vertical) are plotted 
against time (horizontal). These patterns were obtained by a 
compu1,er program that simulates the generation of the three 
kinds olf sequences by tossing dice. The white noise is based 
on the sum obtained by repeated tosses of 10 dice. These sums 
range from 10 to 60, but the probabilities naturally force a 
clustering around the median. The Brownian noise was gen- 
erated by tossing a single die and going up one step on the 
scale if the number was even and down a step if the number 
was odd. 

The llf noise was also generated by simulating the toss- 
ing of 10 dice. Although llf noise is extremely common in na- 
ture, it was assumed until recently that it is unusually cum- 
bersome to simulate llf noise by randomizers or computers. 
Previous composers of stochastic music probably did not even 
know atbout llf noise, but if they did, they would have had 
considerable difficulty generating it. As this article was being 
prepared Voss was asked if he could devise a simple proce- 
dure bj7 which readers could produce their own llf tunes. He 
gave same thought to the problem and to his surprise hit on a 
clever way of simplifying existing llf computer algorithms that 
does the trick beautifully. 

The method is best explained by considering a sequence 
of eight notes chosen from a scale of 16 tones. We use three 
dice of three colors: red, green and blue. Their possible sums 
range from 3 to 18. Select 16 adjacent notes on a piano, black 
keys as; well ascwhite if you like, and number them 3 through 
18. 

Write down the first eight numbers, 0 through 7 ,  in binary 
notation, and assign a die color to each column as  is shown 
in Figure 6. The first note of our tune is obtained by tossing 
all three dice and picking the tone that corresponds to the 
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FIGURE 5 Typical patterns of white, llf and Brownian noise 



IFIGURE 6 Binary chart for Voss's llf dice algorithm 

sum. Note that in going from 000 to 001 only the red digit 
changes. Leave the green and blue dice undisturbed, still 
showing the numbers of the previous toss. Pick up only the 
red die and toss it. The new sum of all three dice gives the 
seconcl note of your tune. In the next transition, from 001 to 
010, both the red and green digits change. Pick up the red 
and green dice, leaving the blue one undisturbed, and toss 
the pair. The sum of all three dice gives the third tone. The 
fourth note is found by shaking only the red die, the fifth by 
shaking all three. The procedure, in short, is to shake only 
those dice that correspond to digit changes. 

It  is not hard to see how this algorithm produces a se- 
quence halfway between white and brown. The least signifi- 
cant digits, those to the right, change often. The more signif- 
icant digits, those to the left, are more stable. As a result, 
dice corresponding to them make a constant contribution to 
the sum over long periods of time. The resulting sequence is 
not precisely llf but is so close to it that it is impossible to 
distinguish melodies formed in this way from tunes generated 
by natural llf noise. Four dice can be used the same way for 
a llf sequence of 16 notes chosen from a scale of 21 tones. 
With 10 dice you can generate a melody of 21°, or 1,024, notes 
from a. scale of 55 tones. Similar algorithms can of course be 
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implemented with generalized dice (octahedrons, dodecahe- 
drons and so on), spinners or even tossed coins. 

With the same dice simulation program Voss has su.pplied 
three typical melodies based on white, brown, and llf'noise. 
The computer printouts of the melodies are shown in Figures 
7, 8, and 9. In each case Voss varied both the melody and the 
tone duration with the same kind of noise. Above each tune 
are shown the noise patterns that were used. 

Over a period of two years, tunes of the three kinds were 
played at various universities and research laboratories, for 
many hundreds of people. Most listeners found the white mu- 
sic too random, the brown too correlated and the llf "just about 
right." Indeed, it takes only a glance at the music itself to see 
how the llf property mediates between the two extremes. 
Voss's earlier llf music was based on natural llf noise, usu- 
ally electronic, even though one of his best compositions de- 
rives from the record of the annual flood levels of the Nile. 
He has made no attempt to impose constant rhythms. When 
he applied llf noise to a pentatonic (five-tone) scale and also 
varied the rhythm with llf noise, the music strongly resem- 
bled Oriental music. He has not tried to improve his llfmusic 
by adding transition or rejection rules. It is his belief that 
stochastic music with such rules will be greatly imprloved if 
the underlying choices are based on llf noise rather than the 
white noise so far used. 

Note that llf music is halfway between white and brown 
in a fractal sense, not in the manner of music that has tran- 
sition rules added to white music. As we have seen, such mu- 
sic reverts to white when we compare widely separated parts. 
But llf music has the fractal self-similarity of a coastline or a 
mountain range. Analyze the fluctuations on a small scale, from 
note to note, and it is llf. The same is true if you break: a long 

= never tune into 10-note sections and compare them. The tunt 
forgets where it has been. There is always some correlation 
with its entire past. 

It is commonplace in musical criticism to say that we en- 
joy good music because it offers a mixture of order aind sur- 
prise. How could it be otherwise? Surprise would not be sur- 
prise if there were not sufficient order for us to anticipate 
what is likely to come next. If we guess too accurately,, say in 
listening to a tune that is no more than walking up and down 
the keyboard in one-step intervals, there is no surprise at all. 
Good music, like a person's life or the pageant of history, is a 
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wondrous mixture of expectation and unanticipated turns. 
There is nothing new about this insight, but what Voss has 
done is to suggest a mathematical measure for the mixture. 

I cannot resist mentioning three curious ways of trans- 
forming a melody to a different one with the same llf slpectral 
density for both tone patterns and durations. One is to write 
the melody backward, another is to turn it upside down and 
the third is to do both. These transformations are easily ac- 
complished on a player piano by reversing and/or inverting 
the paper roll. If a record or tape is played backward, un- 
pleasant effects result from a reversal of the dying-away qual- 
ity of tones. (Piano music sounds like organ music.) Reversal 
or inversion naturally destroys the composer's transition pat- 
terns, and that is probably what makes the music sound so 
much worsethan it does when it is played normally. Since 
Voss composed his tunes without regard for short-range tran- 
sition rules, however, the tunes all sound the same when they 
are played in either direction. 

Canons for two voices were sometimes deliberately writ- 
ten, particularly in the 15th century, so that one melody is 
the other backward, and composers often reversed short se- 
quences for contrapuntal effects in longer works. Figure 10 
shows a famous canon that Mozart wrote as a joke. In this 
instance the second melody is almost the same as the one you 
see taken backward and upside down. Thus if the sheet is 
placed flat on a table, with one singer on one side and the 
other singer on the other, the singers can read from the same 
sheet as they harmonize! 

No one pretends, of course, that stochastic llf music, even 
with added transition and rejection rules, can compete with 
the music of good composers. We know that certain frequency 
ratios, such as the three-to-two ratio of a perfect fifth, are more 
pleasing than others, either when the two tones are played 
simultaneously or in sequence. But just what composers do 
when they weave their beautiful patterns of meaningless sounds 
remains a mystery that even they do not understand. 

It is here that Plato and Aristotle seem to disagree. Plato 
viewed all the fine arts with suspicion. They are, he said (or 
at least his Socrates said), imitations of imitations. Each time 
something is copied something is lost. A picture of a bed is 
not as good as a real bed, and a real bed is not as good as the 
universal, perfect idea of bedness. Plato was less concerned 
with the sheer delight of art than with its effects on charac- 
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ter, and for that reason his ReDublic and Laws recommend 
strong state censorship of all the fine arts. 

Aristotle, on the other hand, recognized that the fine arts 
are of value to a state primarily because they give pleasure, 
and that this pleasure springs from the fact that artists do 
much more than make poor copies. 

They said, "You have a blue guitar, 
E'ou do not play things as they are. " 
The man replied, "Things as they are 
Are changed upon the blue guitar. " 



Wallace Stevens intended his blue guitar to stand for all 
the arts, but music, more than any other art and regardless of 
what imitative aspects it may have, involves the making of 
something utterly new. You may occasionally encounter nat- 
ural scenes that remind you of a painting, or episodes in life 
that make you think of a novel or a play. You will neveir come 
on anything in nature that sounds like a symphony. As to 
whether mathematicians will someday write computer pro- 
grams that will create good music--even a simple, memorable 
tune-time alone will tell. 

White, Brown, and Fvactal Music 

Irving Godt, who teaches music history at  the Indiana Uni- 
versity of Pennsylvania, straightened me out on the so-called 
Mozart canon with the following letter. It appeared in Scien- 
tific American (July, 1978): 

2 1 

A few musical errors slipped past Martin Gardner's critical 
eye when he took up "Mozart's palindromic and invertible canon" 
in his report on fractal curves and "one-over-f' fluctuations. 

Mozart scholars now agree that the canon is almost cer- 
tainly not by Mozart, even though publishers have issued it un- 
der his name. For more than 40 years the compilers of the au- 
thoritative Kochel catalogue of Mozart's compositions lnave 
relegated it to the appendix of doubtful attributions, where along 
with three other pieces of a similar character, it bears the cat- 
alogue number K. Anh. C 10.16. We have no evidence that the 
piece goes back any further than the last century. 

The piece is not for two singers but for two violins. Singers 
cannot produce the simultaneous notes of the chords in the 
second measure (and elsewhere), and the ranges of the parts 
are quite impractical. To perform the piece the two players be- 
gin from opposite ends of the sheet of music and arrive at a 
result that falls far below the standard of Mozart's authentic 
canons and other jeux d'esprit. The two parts combine for long 
stretches of parallel octaves, they rarely achieve even the most 
rudimentary rhythmic or directional independence, and their 
harmony consists of little more than the most elementary ~ ~ r i t -  
ing in parallel thirds. This little counterfeit is not nearly as  
interesting as Mr. Gardner's columns. 

John G. Fletcher wrote to suggest that because llf music 
lies between white and brown music it should be called tan 



music. The term "pink" has also been suggested, and actually 
used by some writers. Fate magazine (October, 1978) ran a 
full-page advertisement for an L P  record album produced by 
"Master Wilburn Burchette," of Spring Valley, California, ti- 
tled Mind Storm. The ad calls it "fantastic new deep-hypnotic 
music that uses a phenomenon known in acoustical science 
as 'pink sound' to open the mind to thrilling psychic revela- 
tions! 'This astonishing new music acts something like a crys- 
tal ball reflecting back the images projected by the mind. . . . 
Your spirit will soar as this incredible record album carries 
you to new heights of psychic awareness!" 

Frank Greenberg called my attention to some "mountain 
music" composed by Sergei Prokofiev for Sergei Eisenstein's 
film Alexander Nevsky in 1938. "Eisenstein provided Proko- 
fiev with still shots of individual scenes of the movie as  it was 
being filmed. Prokofiev then took these scenes and used the 
silhoulette of the landscape and human figures as a pattern for 
the position of the notes on the staff. He then orchestrated 
around these notes." 

"On Significance in Music." Susanne K. Langer, in Philoso- 
phy in a New Key, Harvard University Press, 1957. 

Noise: Sources, Characterization, Measurement. A. van der Ziel. 
Prentice-Hall, 1970. 

"llf Noise in Music and Speech." Richard F. Voss and John 
Clarke, in Nature, 258, 1975, pages 317-3 18. 

" llf Noise in Music." Richard F. Voss and John Clarke, in The 
Journal of the Acoustical Society of America, 63, 1978, 
pages 258-263. 

"The :Noise in Natural Phenomena." Bruce J. West and Mi- 
chael Shlesinger, in American Scientist, 78, l 978, pages 
40-45. 

"llf Random Tones: Making Music with Fractals." Anthony 
T. Scarpelli, in Personal Computing, 3, 1979, pages 17- 
27. 

"Making Music Fractally." Dietrick E. Thomsen, in Science 
News, 1 17, 1980, pages 187 ff. 



mite, Brown, and Fractal Music 23 

"llf Fluctuations in Biological Systems." T. Musha, in Sixth 
International Symposium on Noise in  Physical Sys:tems, " 
National Bureau of Standards, 198 1, pages 143- 146. 

"Noises: White, Pink, Brown, and Black." Manfred Schroe- 
der, in Fractals, Chaos, Power Laws, Chapter 5 ,  W .  H. 
Freeman, 199 1. 



1 The Tinkly Temp e 

No! you won't 'eed nothin' else 
But them spicy garlic smells 
An' the sunshine an' the palm-trees an' the tinkly [Eric] 

temple-bells! 

-RUDYARD KIPLING, "Mandalay" 

Keeping time, time, time, 
In a sort of Runic rhyme, 
To the tintinnabulation that so  

musically wells 
From the bells, bells, bells, bells. 
Bells. bells, bells-- 
From the jingling and the tinkling 

of the bells. 
-EDGAR ALLAN POE, "The Bells" 

I magine that five plates labeled a, b, c, d and e are in a row on 
a table. Also on the table are five chessmen: a king, a queen, 

l a  bishop, a knight and a rook. In how many ways can the 
chessmen be arranged on the plates so that one chessman is 
on each plate? The answer is 5!. The exclamation mark is the 



factorial sign, indicating that the answer is 1 x  2 x  3 x  4 x  5 ,  or 
120. The problem is combinatorially equivalent to counting 
the number of ways the letters a, b, c, d and e can be per- 
muted. In general, for n  objects the number of ways is n!. 

Now alter the rules a bit to allow any number of objects, 
from zero to five, to be on any plate. In how many different 
ways can the chessmen be placed on the plates? It is obvious 
that one piece goes on one plate in only one way. Two pieces 
can go on two plates in four ways, as  is shown in Figure 1 1 .  
If you experiment with three plates and three objects, you 
will find there are 27 ways. Because 1 ,  4 and 27 are equal to 
1 ', 22 and 33, one might guess that n  objects go on n  plates in 
nn ways. That is indeed correct. The five chessmen can go on 
five plates in S5,  or 3,125, ways. 

If there are n  objects and k  plates, then there are kn ways 
to place the objects on the plates according to the altered 
rules. For example, two objects go on three plates in 3*, or 
nine, ways, as  is shown at the right in Figure 1 1 .  It is easy to 
see why the formula works. The first object can be placed on 
the k  plates in k  different ways. The second object can also 
go on any of the k  plates, so that it too can be placed in k  
ways. Since there are n  objects, it is clear that they can be 
placed on k  plates in k x k x k x  . . . x  k = k n  ways. 

Consider a more difficult problem. There are the same 
five chessmen and the same five plates, but now the plates 
are unlabeled. In other words, the plates are considered to be 
identical, and so their positions on the table are unimportant. 
For example, if the king and queen are on one plate and the 
other three chessmen are on another, it does not matter which 
plates hold the two groups. All partitions of the set that place 
the king and queen on one plate and the bishop, knight and 
rook on another, regardless of which two plates are used, will 
be considered identical and counted as a single way of plac- 
ing the chessmen. How can all the ways of placing the five 
objects be counted? 

Once again one object obviously goes on one plate in just 
one way. Two objects go on two plates in two ways: either 
both on one plate or one on each plate. This case models many 
real situations. For example, there are two essentially differ- 
ent ways a husband and wife can occupy unlabeled twin beds: 
they sleep either in separate beds or in the same bed. There 
are two ways a policeman can handcuff two prisoners: either 
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FIGURE 11 Ways of placing two objects on two labeled plates (left) 
and on three labeled plates (right) 



each prisoner can be handcuffed separately or the two can be 
handcuffed to each other. Figure 12 shows the five ways three 
objects can be placed on three unlabeled plates. This case 
models the five ways three people can occupy three unlabeled 
beds, the five ways three nations can form alliances and so 
on. 

As an experiment you might pause at  this point and ac- 
tually count the ways four objects can be placed on four un- 
labeled plates. In more technical terms, the problem is to de- 
termine the number of ways a set of four distinct elements 
can be partitioned into nonempty subsets. You will findl there 
are exactly 15 ways. For five objects the number of ways to 
partition the set jumps to 52. As the number of objects n in- 
creases, a sequence of numbers is being generated: 1, 2, 5, 
15, 52. . . . The numbers in this sequence, which aLre ex- 
tremely useful in combinatorial theory, are called Bell num- 
bers in honor of the Scottish-born American mathematician 

FIGURE 12 Third Bell number (B3= 5) counts the ways of placing 
three objects on three unlabeled plates 



Eric Temple Bell, who died in 1960. They are closely related 
to the Catalan numbers, which were the topic of Chapter 20 
in my Time Travel and Other Mathematical Bewilderments (W. 
H .  Freeman, 1988). 

Although Bell numbers were recognized long before Bell 
wrote about them, he was the first to analyze them in depth 
and show their importance. In his first paper on the numbers, 
Bell explained how his interest had been awakened. He had 
noticed an error in a handbook that gave what is called the 
Maclaurin expansion for the expression eex, where e is the 
transcendental Euler number and x is any positive integer. 
The correct expansion is: 

Note that the coefficients for the powers of x are pre- 
cisely the Bell numbers. (Bell called the numbers exponential 
numbers, but after the combinatorialist John Riordan began 
denoting them by B,  to honor Bell, they quickly became known 
as Bell numbers.) From the Maclaurin expansion it is pos- 
sible t . ~  derive what is called Dobinski's formula for the nth 
Bell number, B,: 

Bell was primarily a number theorist, but he is best known 
for his classic history The Development of  Mathematics, his more 
popularly written Men of Mathematics and other books for the 
general public. Younger mathematicians may be surprised to 
learn that in the 1920's and 1930's Bell was a prolific writer 
of science fiction under the pseudonym John Taine. Five of 
his novels are reprinted in two Dover paperbacks: Seeds o f  
Li fe  and White Lily and The Time Stream. In 195 1 Bell's book 
Mathematics, Queen and Servant of Science was reviewed in a 
Pasadena Sunday newspaper by John Taine. "The last flap of 
the jacket," wrote Taine, "says Bell 'is perhaps mathematics' 
greatest interpreter.' Knowing the author well, the reviewer 
agrees,." 

Back to the Bell numbers, which might be called Bells or 
even Temple Bells. The first 13 Bells are shown in Figure 13, 
left. By convention Bo equals 1. As you can see, the numbers 
grow larger at an exponential rate, or, as Poe has it in "The 



Bells," they rise "higher, higher, higher, with a desperate de- 
sire." The 100th Bell is a number of 116 digits. 

Formulas for the nth Bell are complicated and difficult to 
use in calculating the series, but fortunately there is a simple 
recursive procedure that cranks them out rapidly. It is best 
understood by considering the formation of the triangle of 
numbers shown in Figure 13, top right. (Following a sugges- 
tion of correspondent Jeffrey Shallit, I shall call this the Bell 
triangle.) Start with 1 at  the top and 1 below it. Since 1 plus 
1 equals 2, place 2 at  the end of the second row. Bring: the 2 
back to start the third row. The sum of 2 and the number 
above it is 3,  and so put 3 to the right of 2. The sum of 3 and 
the number above it is 5, and so 5 goes to the right of 3. Con- 
tinue in this manner, observing the following two rules: The 
last number of each row is the first number of the next row, 
and all other numbers are obtained by adding the desired 
number's left neighbor to the number above the neighbor. The 
sequence of Bell numbers appears on two sides of the trian- 
gle. When the triangle is rotated slightly, it becomes a differ- 

FIGURE 13 Bells (left) and two forms of the Bell triangle (right) 



ence triangle, as  is shown at bottom right of Figure 13. Each 
number below the top row is the difference of the two num- 
bers above it. 

Like the more familiar Pascal triangle, the Bell triangle 
is rich with interesting properties. In the Bell triangle shown 
at the top right in the illustration the sums of the horizontal 
rows are the numbers on the second infinite diagonal. If the 
sum of a row is added to the Bell number at  the end of that 
row, the number obtained is the next Bell number. If each 
number is replaced by 0 for odd or E for even, it is easy to 
see that every third Bell is even. Hence the ratio of the num- 
ber of odd Bells to the number of even Bells is 2: 1, and the 
sum of any adjacent triplet of Bells must be even. 

Dozens of curious properties of the Bell sequence have 
been rioted, and others are still being discovered. For ex- 
ample, "Touchard's congruence" states: Bp+k= Bk + Bk+ 1 

(modulo p), where p is a prime number. In other words, if the 
n of B,, is expressed as the sum of a prime p and a number k,  
and B,, is divided by p, the remainder will equal the remain- 
der obtained when the sum of Bk and Bk+l is divided by p. 
Let k equal zero, and the congruence becomes B,=2 (modulo 
p). In other words, every B, for which n is a prime number 
has a remainder of 2 when it is divided by that prime. For 
example, B13 is equal to 27,644,437; divide this number by 
13 and the remainder is 2. 

Bells play an important role in prime-number theory be- 
cause they count the ways any number with distinct prime 
factors can be factored. For example, 30 has three different 
prime factors: 2, 3 and 5. Bg equals 5. The five ways of fac- 
toring 30 are 2 x 3 x 5, 5 x 6, 3 x 10, 2 x 15 and 30. It is not 
hard to see how this problem is isomorphic with the task of 
putting three distinct objects on three unlabeled plates. Note 
that three of the first 10 Bells are prime: 2, 5 and 877. Are 
there other prime Bells? Is there a largest prime Bell? I do 
not know the answer to either question. 

One of the surprising applications of the Bells is that they 
count the number of possible rhyme schemes for a stanza of 
poetry. A one-line stanza has one rhyme scheme, a two-line 
stanza has two rhyme schemes (the lines either rhyme or do 
not), a three-line stanza has five (aaa, aab, aba, abb and abc) 
and so on. It is said that this "rhyming and the chiming of the 
bells" (Poe) was first observed by the British mathematician 



J. J. Sylvester, but I have not been able to find a reference to 
it in his little book The Laws of Verse. I shall be grateful to 
any reader who can give me the reference. 

H. W. Becker, writing about the Bells in 1941, intro- 
duced what he called an "interesting theorem." Call a stanza 
completely rhymed if every line rhymes with at least one other 
and incompletely rhymed if at least one line rhymes with no 
other. The number of possible completely rhymed stanzas for 
n lines always turns out to equal the number of possible in- 
completely rhymed stanzas for n - 1 lines. 

Henry W. Gould, a number theorist at West Virginia Uni- 
versity, discovered that the Japanese had an attractive way 
of diagramming rhyme schemes at least as early as A.D. 1000. 
Figure 14 shows the 52 diagrams for stanzas of five lines. 
Vertical lines stand for lines of the stanza, and horizontal lines 
join the lines that rhyme. Gould first described the diagrams 
in 1976 in his Research Bibliography of Two Special Number 
Sequences, a valuable listing of 175 references on Bell num- 
bers and 445 references on Catalan numbers. 

The earliest-known appearance of this method of dia- 
gramming is found in The Tale of Genji, a famous Japanese 
novel written by Lady Murasaki, who lived from about A.D. 
978 to about 103 1. Every chapter except the first and the last 
in the 54-chapter book is headed by one of the 52 diagrams 
for stanzas of five lines. The vertical lines are incense sticks, 
each of which can be any one of five different colors. Horizon- 
tal lines join sticks of the same color. The colored diagrams 
appear in early editions of this Japanese classic but not in 
English translations. As Joanne Growney observed in her 1970 
doctoral dissertation, if all the diagrams with lines that inter- 
sect are omitted, the number of remaining diagrams is the 
fifth Catalan number, 42, and this is true in general for Mu- 
rasaki diagrams of n lines. Just why Lady Murasaki chose 
this order for her diagrams, Gould writes, is as unknown as 
the basis, if indeed there is any, for the ordering of the 64 
hexagrams in the I Ching. 

Quintets are not common in English poetry, but perhaps 
with diligent searching one could find notable examples of all 
52 patterns. For example, Shelley's "To a Skylark is written 
in quintets that correspond to the fifth diagram of row five. 
The fourth diagram of the second row applies to Emily Dick- 
inson's well-known poem: 
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To make a prairie it takes a clover 
and one bee, 

One clover, and a bee, 
And revery. 
The revery alone will do, 
If  bees are few. 

The Tinkly Temple Be& 

Here is a lovely stanza from Alice Meynell's "A Dead 
Harvest" that corresponds to the pattern of the fourth dia- 
gram of row four: 

33 

Along the graceless grass of town 
They rake the rows of red and brown. 
Dead leaves, unlike the rows of hay 
Delicate, touched with gold and gray, 
Raked long ago and far away. 

The limerick is a quintet with a rhyme scheme indicated 
by the fourth diagram of row six. An unconventional limerick, 
attributed to W. S. Gilbert, has the scheme of the first dia- 
gram: 

There was an old man o f  Dundee. 
Who was stung on the arm by a wasp. 

When asked "Does it hurt?" 
He replied "No it doesn't. 

I'm so glad that it wasn't a hornet." 

There are several applications of the Bells to graph the- 
ory. Consider the following problem. Place six dots in ;a circle 
as if to mark the corners of an invisible hexagon and label the 
dots a through f. Regard an isolated dot as a degenerate con- 
vex polygon of one corner and two dots joined by a straight 
line as a degenerate convex polygon of two corners. With a 
pencil connect the dots in any way to form disjoint convex 
polygons of one, two, three, four, five or six corners. (Disjoint 
means that no two polygons may have a dot in common.) The 
lines of the same polygon may not cross one another, because 
if they did, the polygon would not be convex; lines of distinct 
polygons may, however, intersect. If you like, you may draw 
nothing, so that the pattern will consist of six one-corner 
polygons. Or you may connect all six dots to make a single 
hexagon. Or you may produce any mixture of polygons pro- 
vided they are convex and disjoint. 

Figure 15 shows four possible patterns. How many differ- 
ent patterns are there? If you have followed the discu~ssion of 
the Bells, the question should present no difficulty. 



FIGURE 15 A Bell problem 

Isolated spots are subsets of one element each, a pair of joined 
spots is a subset of two elements, three joined spots a subset 
of three elements, and so on. Each pattern corresponds, 
therefore, to a way of partitioning a set of elements into dis- 
joint subsets. Since these ways are counted by Bell numbers, 
the number of patterns for six spots is the sixth Bell number, 
203. In general, the number of patterns for n spots is the nth 
Bell. 



I raised the question of whether the number of Bell primes is 
infinite or finite. Many readers pointed out that in addition to 
the first three Bell primes, B2, B3 and B7, the 13th Bell, 
27,644,437, is also prime. A conjecture that all Bell primes 
have prime subscripts was shot down by Vaughan Pratt of the 
Laboratory for Computer Science at the Massachusetts Insti- 
tute of Technology. His fast program, which tested Bells 
through B161 (a number of more than 200 digits), found the 
next two Bell primes, B42 and Bss. Pratt conjectures that there 
are infinitely many Bell primes but that he will learn of at  
most one new one in his lifetime. B42 has 38 digits; Bss has 
54. 

Sin Hitotumatu provided more details on the Lady Mu- 
rasaki diagrams. In 1600 Japanese noblemen and ladies played 
a game called Genji-ko or Monko. An umpire randomly se- 
lected sticks of incense from a supply that contained five dif- 
ferent kinds. Players sniffed the burning sticks and tried to 
guess which were the same and which were different. The 52 
possible selections were diagrammed by the players as ex- 
plained earlier. 

In the early 17th century, Japanese mathematicians as- 
signed a mnemonic name to each diagram, using the names of 
the 5 2  chapters (between the first and the last) of Lady Mu- 
rasaki's novel Tale of Genji. I t  is not known whether this as- 
signment of diagrams to chapters was random or was based 
on some pattern or perhaps a fancied correlation with the 
characters and events of each chapter. In the late 19th cen- 
tury, printed editions of Tale of Genji began to carry the Mu- 
rasaki diagrams as  chapter headings. 

Andrew Lenard of Indiana University reported success in 
proving the following curious property of Bell numbers. (The 
property had been noticed but not established.) The first 2n 
Bells can be arranged in a square matrix for n = 3: 
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What is the determinant of such a matrix? It is given by 
an astonishingly simple formula: (1!)(2!)(3!) . . . (n!). In this 
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case 203 is the sixth Bell; n=3, and the formula gives 
1 x 2 x 6 = 12 as the determinant's value. 

Christian Radoux, of the Universite de l'Etat, in Belgium, 
had guessed the correctness of the formula in a note in the 
Notices of the American Mathematical Society, 25, 1978, p. 197. 
He wrote that he later proved the result, and also generalized 
it in a paper scheduled to appear in a French journal. 

Antoni Kanczewski pointed out that the stanzas of Robert 
Frost's "The Road Not Taken" have the rhyme scheme of the 
last diagram in the second row of Lady Murasaki's figures. 
Here is the familiar last stanza: 
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I shall be telling this with a sigh 
Somewhere ages and ages hence: 
Two roads diverged in  a wood and I- 
I took the one less travelled by, 
And that has made all the difference. 

CHAPTER Two 

Philip Doty reminded me that the rhymeless Limerick 
credited to W. S. Gilbert was given in numerous variations in 
letters to the London Times Literary Supplement, during the 
spring and summer of 1978. Anthology references are cited. 

The most eccentric rhyme scheme known to me was used 
by Dylan Thomas for the prologue to his Collected Poems. (I 
came across this in Bob Vannicombe's "Quiz-Mathematics 
in Literature," Journal of Recreational Mathematics, 10, 197 7- 
78, pp. 267-269.) The scheme can be expressed by numbers 
1 through 5 1, followed by the same numbers in reverse order. 
Thomas was reportedly upset by the fact that few readers no- 
ticed the pattern. 

Alan Watton, Sr., in a letter in Scientific American (July, 
1978) disclosed that Eric Temple Bell's first published article 
on mathematics was in Scientific American in 19 16. The paper 
won honorable mention in a contest for the best explanation 
of relativity theory written for persons of average intelli- 
gence. 

Ethan Bolker of the University of Massachusetts and 
David :Robbins of Hamilton College discovered a surprising 
application of Bell numbers to card shuffling. Given a packet 
of n playing cards, we define a shuffle as follows. The first 
(top) card is placed at any position in the packet from 1 through 
n. (If it is placed at 1, of course, it stays where it is.) The card 
now on top is placed at any position 1 through n. The proce- 
dure is repeated n times. 



For a packet of n cards there are nn possible shuffles. How 
many restore the packet to its original order? The answer is 
the nth Bell number. 

We can describe each shuffle by a sequence of numbers 
that gives the positions to which each top card is shifted. For 
example, if in the third move the top card goes to second from 
the bottom in a packet of 10, the third number in the se- 
quence is 9. The pattern of a shuffle is uniquely defined by 
this chain of position numbers. 

When n is 1 ,  the only possible shuffle, 1, is trivially a Bell 
shuffle, that is, a shuffle that restores the pack to its original 
order. When n is 2,  there are two Bell shuffles: 11 and 22. 
When n is 3,  there are 33, or 27, possible shuffles, of which 
five (1 11, 122, 2 12, 22 1 and 333) are Bell shuffles. When n is 
4 ,  there are 15 shuffles that restore order, and so on. As n 
increases, the Bells are generated. 

Other shuffling procedures are similarly related to Bell 
numbers. For instance, the shuffle described above can be 
modified so that instead of the top card being shifted on every 
move it is shifted only on the first move. The second card of 
the new arrangement is shifted on the second move, the third 
card on the third move and so on. Once again the nth Bell 
number counts the shuffles that restore the original order of 
n cards. For example, the five Bell shuffles for three cards 
are 123, 132, 213, 231 and 321. 

Still another shuffle can be described by assuming you 
have a packet of playing cards with an ace on top, a deuce 
second, a three third, and so on. Put the ace anywhere, then 
put the deuce anywhere, the three anywhere, and continue to 
the nth value. For three cards, the five Bell shuffles that re- 
store the initial order are 123, 133, 223, 232 and 333. 

Bolker and Robbins found an ingenious way of establish- 
ing a one-to-one correspondence between the Bell shuffles and 
the set of partitions counted by the Bells. Their paper on these 
nonrandom shuffles, and others related to Catalan numbers, 
is given in the bibliography. 
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~athematica 1 Zoo 

T here has never been a zoo designed to display animals with 
features of special interest to recreational mathematicians, yet 

s u c h  a zoo could be both entertaining and instructive. It would 
be divided, as I visualize it, into two main wings, one for live 
animals, the other for pictures, replicas and animated car- 
toons of imaginary creatures. Patrons of the "mathzoo" would 
be kept informed of new acquisitions by a newsletter called 
ZOONOOZ (with the permission of the Zoological Society of 
San Diego, which issues a periodical of that name), a title 
that is both palindromic and the same upside down. 

A room of the live-animal wing would contain micro- 
scopes through which one could observe organisms too tiny 
to be seen otherwise. Consider the astonishing geometrical 
symmetries of radiolaria, the one-celled organisms that flour- 



ish in the sea. Their intricate silica skeletons are the nearest coun-
terparts in the biological world to the patterns of snow crystals. In
his Monograph of the Challenger Radiolaria, the German biologist
Ernst Haeckel described thousands of radiolaria species that he
discovered on the Challenger expedition of 1872–76. The book
contains 140 plates of drawings that have never been excelled in
displaying the geometric details of these intricate, beautiful
forms.

Figure 16, from Haeckel’s book, is of special interest to math-
ematicians. The first radiolarian is basically spherical, but its six
clawlike extensions mark the corners of a regular octahedron.
The second skeleton has the same solid at its center. The third is
a regular icosahedron of 20 faces. The fifth is the 12-sided dodec-
ahedron. Other plates in Haeckel’s book show radiolaria that
approximate cubical and tetrahedral forms.

It is well known that there are just five Platonic solids, three
of which have faces that are equilateral triangles. Not so widely
known is that there are an infinite number of semi-regular solids
also with sides that are equilateral triangles. They are called
“deltahedra” because their faces resemble the Greek letter delta.
Only eight deltahedra are convex: those with 4, 6, 8, 10, 12, 14,
16 and 20 faces. The missing 18-sided convex deltahedron is mys-
terious. One can almost prove it should exist, and it is not so easy
to show why it cannot. It is hard to believe, but the proof that
there are only eight convex deltahedra was not known until B. L.
van der Waerden and Hans Freudenthal published it in 1947. If
concavity is allowed, a deltahedron can have any number of faces
of eight or greater.

The four-faced deltahedron is the regular tetrahedron, the
simplest of the Platonic solids. The six-faced deltahedron consists
of two tetrahedra sharing one face. Note the fourth radiolarian in
Haeckel’s picture. It is a 10-faced deltahedron, or rather one that
is inflated slightly toward a sphere. It may surprise you to learn
that there are two topologically distinct eight-sided deltahedra.
One is the familiar regular octahedron. Can you construct a
model of the other one (it is not convex)?

Surfaces of radiolaria are often covered with what seems
to be a network of regular hexagons. The regularity is partic-
ularly striking in Aulonia hexagona, shown in Figure 17. Such
networks are called “regular maps” if each cell has the same

40 CHAPTER THREE
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number of edges and each vertex has the same number of edges 
joined to it. Imagine a regular tetrahedron, octahedron or ico- 
sahedron inflated like a balloon but preserving its edges as 
lines on the resulting sphere. The tetrahedron will form a reg- 
ular mag of triangles with three edges at each vertex, the 
octahedron a map of triangles with four edges at each vertex, 
and the icosahedron a map of triangles with five edges at each 

FIGURE 16 Radiolaria skeletons in Ernst Haeckel's Monograph of 
the Challenger Radiolaria 



FIGURE 17 The radiolarian Aulonia hexagona 

vertex. Inflating a cube produces a regular map of four-sided 
cells with three edges at  each vertex. Inflating a dodecahe- 
dron produces a regular map of pentagons with three edges 
at  each vertex. 

Aulonia hexagona raises an interesting question. Is it pos- 
sible to cover a sphere with a regular map of hexagons, three 
edges at  each vertex? Only the topological properties of the 
map concern us. The hexagons need not be regular or even 
convex. They may have any size or shape, and their edges 
may twist and curve any way you like provided they do not 
intersect themselves or one another and provided three of them 
meet at each vertex. 

The answer is no, and it is not hard to prove impossibility 
with a famous formula that Leonhard Euler discovered for the 
skeletons of all simply connected (no "holes") polyhedra. The 
formula is F+ C- E = 2 ,  where the letters stand for faces, cor- 
ners and edges. Since all such polyhedra can be inflated to 
spheres, the formula applies also to maps on the sphere. In 
Chapter 13 of Enjoyment of Mathematics, by Hans Rade- 
macher and Otto Toeplitz, you will find it explained how Eu- 
ler's formula can be used in proving that no more than five 
regular maps can be drawn on a sphere and that therefore no 
more than five regular convex solids can exist. As a second 
problem, can you use Euler's formula to show that a regular 
map of hexagons is impossible on a sphere? 



D'Arcy Wentworth Thompson, whose classic work On 
Growth and Form contains an excellent section on radiolaria, 
liked to tell about a biologist who claimed to have seen a 
spherical radiolarian covered with a perfect map of hexagons. 
But, said Thompson, Euler had proved this impossible. "That," 
replied the biologist, "proves the superiority of God over 
mathematics." 

"Euler's proof happened to be correct," writes Warren S. 
McCulloch in an essay where I found this anecdote, "and the 
observations inaccurate. Had both been right, far from prov- 
ing God's superiority to logic, they would have impugned his 
wit by catching him in a contradiction." If you look carefully 
at the picture of Aulonia hexagona you will see cells with more 
or fewer than six sides. 

Under electron microscopes in our zoo's micro room would 
be the many viruses that recently have been found to crystal- 
lize into macromolecules shaped like regular icosahedra: the 
measles virus, the herpes, the triola iridescent and many oth- 
ers (see R. W. Horne's article cited in the bibliography). Vi- 
ruses may also have dodecahedra1 shapes, but as far as I know 
this remains unsettled. Another recent discovery is that some 
viruses, such as the one that causes mumps, are helical. It 
had formerly been thought that helical structures were re- 
stricted to plants and to parts of animals: hair, the umbilical 
cord, the cochlea of the human ear, the DNA molecule and so 
on. A section of our zoo would feature such spectacular heli- 
cal structures as molluscan seashells, the twisted horns of 
certain sheep, goats, antelopes and other mammals, and such 
curiosities as  "devil's corkscrews"-the huge fossil burrows of 
extinct beavers (see Chapter 1, "The Helix," of my Sixth Book 
of Mathematical Games from Scientific American). 

In the macro world of fishes, reptiles, birds, insects, 
mammals and human beings the most striking geometrical as- 
pect of the body is its overall bilateral symmetry. It is easy to 
understand why this symmetry evolved. On the earth surface 
gravity creates a marked difference between up and down, 
and locomotion creates a marked difference between front and 
back. But for any moving, upright creature the left and right 
sides of its surroundings-in the sea, on the land or in the 
air-are fundamentally the same. Because an animal needs to 
see, hear, smell and manipulate the world equally well on both 
sides, there is an obvious survival value in having nearly 
identical left and right sides. 
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Animals with bilateral symmetry are of no interest for our 
mathzoeyou can see them at any zoo-but it would be amus- 
ing to assemble an exhibit of the most outrageous violations 
of bilateral symmetry. For example, an aviary would feature 
the crossbill, a small red bird in the finch family that has its 
upper and lower beaks crossed in either of the two mirror- 
image ways. The bird uses its crossed bill for prying open 
evergreen cones in the same way a cook uses a plierlike de- 
vice to pry off the lid of a jar or can. A medieval legend has it 
that the bill became twisted as  the bird was trying vainly to 
pull the nails from the cross when Jesus was crucified; in the 
effort the bird's plumage became stained with blood. In the 
same aviary would be some wry-billed plovers from New Zea- 
land. The entire bill of this funny bird is twisted to the right. 
The bill is used for turning over stones to find food. As you 
would expect, foraging wry-billed plovers search mainly on 
the right. 

An aquarium in our mathzoo would exhibit similar in- 
stances of preposterous asymmetry among marine life: the male 
fiddler crab, for example, with its enormous left (or right) claw. 
Flatfish are even more grotesque examples. The young are 
bilaterally symmetric, but as they grow older one eye slowly 
migrates over the top of the head to the other side. The poor 
fish, looking like a face by Picasso, sinks to the bottom, where 
it lies in the ooze on its eyeless side. The eyes on top turn 
independently so that they can look in different directions at  
the same time. 

Another tank would contain specimens of the hagfish. This 
absurd fish looks like an eel, has four hearts, teeth on its tongue 
and reproduces by a technique that is still a mystery. When 
its single nostril is clogged, it sneezes. The hagfish is in our 
zoo because of its amazing ability to tie itself into an over- 
hand knot of either handedness. By sliding the knot from tail 
to head it scrapes slime from its body. The knot trick is also 
used for getting leverage when the hagfish tears food from a 
large dead fish and also for escaping a predator's grasp (see 
David Jensen's article listed in the bibliography). 

Knots are, of course, studied by mathematicians as a 
branch of topology. Another exhibit in our aquarium would be 
beakers filled with Leucothrix mucor, a marine bacterium 
shaped like a long filament. A magnifying glass in front of each 
beaker would help visitors see the flimsy filaments. They re- 
produce by tying themselves into knots-averhands, figure- 
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eights, even more complicated knots-that get tighter and 
tighter until they pinch the filament into two or more parts 
(see Thomas D. Brock's paper listed in the bibliography). Do 
higher animals ever tie parts of themselves into knots? Fold 
your arms and think about it. 

The most popular of our aquarium exhibits would proba- 
bly be a tank containing specimens of Anableps, a small (eight- 
inch) Central American carp sometimes called the stargazer. 
It looks as  if it has four eyes. Each of its two bulging eyes is 
divided into upper and lower parts by an opaque band. There 
is one lens but separate corneas and irises. This little BEM 
(bug-eyed monster) swims with the band at water level. The 
two upper "eyes" see above water while the two lower ones 
see below. The Anableps is in our zoo because of its asym- 
metric sex life. The young are born alive, which means that 
the male must fertilize the eggs inside the female. The female 
opening is on either the left side or the right. The male organ 
also is either on the left or the right. This makes it impossible 
for two fish of the same handedness to mate. Fortunately both 
males and females are equally left- or right-sexed, and so the 
species is in no danger of extinction. 

In a larger tank one would hope to see some narwhals, 
although until now they have not survived in captivity. This 
small whale, from north-polar seas, has been called the sea 
unicorn because the male has a single "horn" that projects 
straight forward from its upper jaw and is about half the whale's 
body length. Both sexes are born with two small side-by-side 
teeth. The teeth stay small on the female, but the male's left 
tooth grows into an ivory tusk, straight as a javelin and seven 
to 10 feet long. This ridiculous tooth, the longest in the world, 
has a helical groove that spirals around it like a stripe on a 
barber pole. Nobody knows what function the tusk serves. It 
is not used for stabbing enemies or punching holes in ice, but 
during the mating season narwhals have been seen fencing 
with each other, so that its main purpose may be a role in 
sexual ritual (see John Tyler Bonner's article in the bibliog- 
raphy). Incidentally, the narwhal is also unusual in having a 
name starting with the letter n. It is easy to think of mam- 
malian names beginning with any letter of the alphabet ex- 
cept n. 

Among snakes, species that sidewind across the desert 
sands are mathematically interesting because of their highly 
asymmetric tracks: sets of parallel line segments that slant 



either right or left at  angles of about 60 degrees from the line 
of travel. Many species of snakes are capable of sidewinding, 
notably the sidewinder itself, a small rattlesnake of Mexico 
and the U.S. Southwest, and the African desert viper. Ex- 
actly how sidewinding works is rather complicated, but you 
will find it clearly explained in Carl Gans's article. 

The insect room of our mathzoo would certainly display 
the nests of bees and social wasps. They exhibit a hexagonal 
tessellation even more regular than the surfaces of radiolaria. 
A large literature, going back to ancient Greece and still 
growing, attempts to explain the factors that play a role in 
producing this pattern. D'Arcy Thompson, in his book cited 
earlier, has a good summary of this literature. In times before 
Darwin bees were usually regarded as being endowed by the 
Creator with the ability to design nests so that the cells use 
the least amount of wax to hold a maximum amount of honey. 
Even Darwin marveled at the bee's ability to construct a hon- 
eycomb, calling that ability "the most wonderful of known in- 
stincts," and "absolutely perfect in economizing labor and wax." 

Actual honeycombs are not as perfect as early writers im- 
plied, and there are ways of tessellating space with polyhe- 
dral cells that allow an even greater economy of wax. More- 
over, it seems likely that the honeycomb pattern is less the 
result of evolution finding a way to conserve wax than an ac- 
cidental product of how bees use their bodies and the way 
they form dense clusters when they work. Surface tension in 
the semiliquid wax may also play a role. The matter is still 
far from settled. The best discussion I know is a paper by the 
Hungarian mathematician L. Fejes T6th. 

No actual animal propels itself across the ground by roll- 
ing like a disk or a sphere, but our insect room would be in- 
complete without an exhibit of a remarkable insect that trans- 
ports its food by rolling near-perfect spheres. I refer to the 
dung beetle, the sacred scarab of ancient Egypt. These some- 
times beautiful insects (in the Tropics they have bright me- 
tallic colors) use their flat, sharp-edged heads as shovels to 
dig a supply of fresh ordure that their legs then fashion into 
spheres. By pushing with its hind legs and walking backward 
the dung beetle will roll the little ball to its burrow where it 
will be consumed as  food. No one has described the process 
with more literary skill and humor than the French entomol- 
ogist, Jean Henri Fabre, in his essay on "The Sacred Beetle." 

Our zoo's imaginary wing would lack the excitement of 
living creatures but would make up for it in wild fantasy. In 



Flaubert's Temptation of St. Anthony, for example, there is a 
beast called the Nasnas that is half of an animal bisected by 
its plane of symmetry. Jorge Luis Borges, in his delightful 
Book of Imaginary Beings, refers to an earlier invention of such 
a creature by the Arabs. L. Frank Baum's fantasy, Dot and 
Tot of Merryland, tells of a valley inhabited by wind-up ani- 
mals. The toys are kept wound by a Mr. Split, whose left half 
is bright red and right half white. He can unhook his two sides, 
each of which hops about on one leg so that he gets twice as 
much winding done. Conversing with a half of Mr. Split is 
difficult because Mr. Left Split speaks only the left halves of 
words and Mr. Right Split only the right halves. 

A variety of mythical "palindromic" beasts violate front 
and back asymmetry by having identical ends. Borges writes 
of the fabled amphisbaenu (from the Greek for "go both ways"), 
a snake with a head at each end. Dante puts the snake in the 
seventh circle of Hell, and in Milton's Paradise Lost some of 
Satan's devils are turned into amphisbaenas. Alexander Pope 
writes in his Dunciad: 

Thus Amphisbaena ( I  have read) 
At either end assails; 
None knows which leads, 

or which is led, 
For both Heads are but Tails. 

The fable is not without foundation. There are actual 
snakes called amphisbaenas that crawl both ways and have 
such tiny eyes that it is hard to distinguish one end from the 
other. If a flatworm's head is cut off, another grows at the 
base'of the severed head, so palindromic animals actually can 
exist. In Baum's John Dough and the Cherub one meets Duo, 
a dog with a head and forelegs at  both ends (see Figure 18). 
The animal anticipates the Pushmi-Pullyu (it has a two-horned 
head at each end) that flourishes in the African jungle of Hugh 
Lofting's Dr. Dolittle books. 

Rectangular parallelepipeds are never the parts of real 
animals, but in Baum's Patchwork Girl of Oz there is a block- 
headed, thick-skinned, dark blue creature called the Woozy 
(see Figure 19). The animal's head, body, legs and tail are 
shaped like blocks. It is friendly as long as no one says "Kriz- 
zle-kroo." This makes the Woozy so angry that its eyes dart 
fire. Nobody, least of all the Woozy, knows what Krizzle-kroo 



FIGURE 18 Duo, a palindromic dog 

FIGURE 19 L. Frank Baum's Woozy 
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means, and that is what makes it so furious. Borges reminds 
us of the Gillygoo, a bird in the Paul Bunyan mythology, that 
nests on steep slopes and lays cubical eggs that will not roll 
down and break. Minnesota lumberjacks hard-boil them and 
use them for dice. In Stanley G. Weinbaum's story, "A Mar- 
tian Odyssey," a species of nondescript animals on Mars ex- 
crete silica bricks that they use for building pyramidal dwell- 
ings. 

Baum also imagined spherical creatures. The Roly-Rogues, 
in Queen Zixi of Ix, are round like a ball and attack enemies 
by rolling at them. In John Dough and the Cherub, one of the 
main characters is Para Bruin, a large rubber bear that likes 
to roll into a rubber ball and bounce around. 

Borges, writing about animals in the form of spheres, tells 
us that Plato, in the Laws, conjectures that the earth, planets 
and stars are alive. The notion that the earth is a living, 
breathing organism was later defended by such mystics as 
Giordano Bruno, Kepler, the German psychologist Gustav 
Theodor Fechner and Rudolf Steiner (who broke away from 
theosophy to found his rival cult of anthroposophy). The same 
notion is basic to the plot of one of Conan Doyle's stories about 
Professor George Edward Challenger of Lost World fame. When 
Professor Challenger drills a deep hole through the earth's 
epidermis, in a story called "When the Earth Screamed," the 
planet howls with pain. 

Rotating wheels and propellers are common mechanisms 
for transporting man-made vehicles across ground, and through 
the sea and the air, but until recently it was assumed that 
evolution had been unable to exploit rotational devices for 
propulsion. Biologists were amazed to discover that the fla- 
gella of bacteria actually spin like propellers (see the article 
by Howard C. Berg). 

The imaginary wing of our zoo would display two of Baum's 
creatures that use the wheel for propulsion. In Ozma of Oz 
Dorothy has an unpleasant encounter with the Wheelers, a 
race of fierce, four-legged humanoids that have wheels in- 
stead of feet (see Figure 20). In The Scarecrow of Oz we read 
about the Ork, a huge bird with a propeller at  the tip of its 
tail (see Figure 21). The propeller can spin both ways, en- 
abling the bird to fly backward as  well as forward. 

I know of only two imaginary beasts that bend themselves 
into wheels and roll across the ground. From time to time, in 
most parts of the world, people have claimed to have seen 



FIGURE 20 A Wheeler 

FIGURE 2 1 T h e  Ork 



"hoop snakes" that bite their tails to form a hoop and then go 
rolling across the terrain. Some snakes, such as  the American 
milk snake, travel by gathering their body into large vertical 
loops and pushing forward so rapidly that they create an op- 
tical illusion of a rolling ring. These animals may be the origin 
of hoop-snake fables. 

The Dutch artist M. C. Escher made several pictures fea- 
turing his curl-up, the beast shown in Figure 22. This un- 
likely animal moves slowly on six humanlike feet, but when it 
wants to go faster it curls up and rolls like a wheel. 

Most animals, particularly the earthworm, may be thought 
of as  being basically toroidal-a shape topologically equiva- 
lent to a doughnut. There must be many science-fiction ani- 
mals shaped like toruses, but I can recall only the undulating 
silver ringfish, floating on the canals of Ray Bradbury's Mar- 
tian Chronicles, that closes like an eye's iris around food par- 
ticles. 

Topologists know that any torus can be turned inside out 
through a hole in its surface. There is no parallel in earth 
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FIGURE 22 The curl-up, an animal imagined by M. C. Escher, 
can roll like a wheel when it wants to. (Collection Hoags Gemeente- 
museum-the Hague. 1 
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zoology, but there is a spherical organism called volvox that 
actually does turn inside out through a hole. It is a strange 
freshwater-pond colony of hundreds of flagellated cells bound 
together in a spherical jellylike mass that rotates as it moves 
through the water. Volvox is one of those twilight things that 
can be called a green plant (because it obtains food by pho- 
tosynthesis) or an animal (because it moves freely about). One 
is equally hard put to decide whether it is a colony or a single 
organism. 

Young volvox colonies grow inside the mother sphere, but 
the cells have their flagella ends pointing inward. At the spot 
where each infant sphere is attached to the inside of the 
mother, there is a small hole in the infant sphere. When the 
infant reaches a certain size, it breaks away from the mother 
and turns inside out through the hole! Flagella quickly sprout 
at the ends of the cells that now point outward, and the new- 
born colony goes spinning about inside the mother. The mother 
eventually dies by splitting open and allowing her offspring to 
escape, one of the earliest examples on the evolutionary tree 
of nonaccidental death (see the article by John Tyler Bonner). 

We could have considered volvox earlier, but I kept it for 
now to introduce the ta-ta, a mythical but much higher form 
of animal capable of turning inside out. It was invented by 
Sidney H. Sime, the British artist who so wondrously illus- 
trated Lord Dunsany's fantasies. Sime drew and described 
the ta-ta in his only book, Bogey Beasts, a rare collection of 
original verses set to music: 

The Ta-Ta 

There is a cosy Kitchen 
Inside his roomy head 
Also a tiny bedroom 
In which he goes to bed. 

So when his walk is ended 
And he no more would roam 
Inside out he turns himself 
To find himself at Home. 

He cleared away his brain stuff 
Got pots and pans galore! 
Sofas, chairs, and tables, 
And carpets for the floor. 

He found his brains were useless, 
As many others would 
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If they but tried to use them 
A great unlikelihood. 

He pays no rent, no taxes 
No use has he for pelf 
Infested not with servants 
He plays with work himself. 

And when his chores are ended 
And he would walk about, 
Outside in he turns himself 
To get himself turned out. 

Figure 23 shows the answer to the first problem: an eight- 
sided deltahedron (all faces equilateral triangles) that is not 
a regular octahedron. The regular octahedron has four edges 
meeting at each corner. On this solid two corners are meeting 
spots for three edges, two for four edges and two for five edges. 

The second problem was to use Euler's formula, 
F+C-E=2,  to show that no sphere can be covered with a 
"regular map" of hexagons, each vertex the meeting point of 
three edges. Assume such a map exists. Each hexagon has six 
edges and six corners. Therefore if the hexagons did not share 
corners and edges, there would be six times as many edges 
as  faces. Each corner is shared, however, by three faces; 

FIGURE 23 The "other" eight-sided deltahedron 



therefore the number of corners in such a map must be 6Fl3. 
Similarly, each edge is shared by two faces; therefore the 
number of corners in such a map must be 6Fl2. Substituting 
these values in Euler's formula gives the equation F+6F/3 
- 6Fl2 = 2, which simplifies to F+ 2F- 3F= 2, or 0 = 2. This 
contradiction proves the original assumption to be false. 

What happens when the above argument is applied to the 
regular maps formed by the edges of the five Platonic solids? 
In each case we get a formula that gives F a unique value: 4, 
8 and 20 for the tetrahedron, octahedron and icosahedron re- 
spectively, 6 for the cube and 12  for the dodecahedron. Since 
a regular polyhedron cannot have faces with more than six 
edges, we have proved that no more than five regular solids 
can exist. 

Euler's formula also underlies an elementary proof that 
there are exactly eight convex deltahedra. See the paper by 
Beck, Bleicher, and Crowe cited in the bibliography. 

I was mistaken in saying that no animal propels itself across 
the ground by rolling like a disk or sphere. Brier Lielst, Philip 
Schultz, and a geologist with the appropriate name of Paul 
Pushcar, were among many who informed me of a National 
Geographic television special on March 6, 1978, about the 
Namib desert of Africa. It showed a small spider that lives in 
burrows in the sides of sand dunes. When attacked by a wasp, 
it extends its legs like the spokes of a wheel and escapes by 
rolling down the dune. 

Peter G. Trei of Belgium sent me a copy of a note in Jour- 
nal of Mammalogy (February, 1975) by Richard R. Tenaza, an 
American zoologist. Tenaza describes how on Siberut, an is- 
land west of Sumatra, he witnessed the technique by which 
pangolins, a species of scaly anteater, elude capture: they curl 
themselves into a tight ball and roll rapidly down a steep slope 
(see Figure 24). In fact, the name "pangolin" is from a Malay 
word meaning "to roll." 

Roy L. Caldwell, a zoologist at the University of Califor- 
nia, Berkeley, wrote to me about an inch-long crustacean called 
Nannosquilla decemspinosa, found in the sands off the coast of 
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FIGURE 24 An uncurled pangolin 

Panama. "When exposed on dry land, the animal's short legs 
are not sufficiently strong to drag its long, slender body, so it 
flips over on its back, brings its tail up over on its head, and 
takes off rolling much like a tank-track. While it does not ac- 
tually close the perimeter by grasping the tail in its mouth- 
parts, they are usually kept in close proximity. The path taken 
is usually a straight line, the animal can actually climb a five- 
degree slope, and it can make a speed of about six cm/sec." 

Thomas H. Hay told me about a species of wood lice (also 
called slaters, sow-bugs, and pill-bugs) that, when alarmed, 
curl into a ball and roll away. Hay said his children call them 
roly-polys. While working underneath his car, with a trouble 
light beside him, he often finds the roly-polys "advancing in 
inexorable attack. I fantasize that they are Martian armored 
vehicles, released from a tiny spacecraft. Fortunately, they 
move so slowly that my work is finished before they consti- 
tute a threat." 

Robert G. Rogers, in a letter that appeared in Discover 
(October, 1983) had this interesting comment on an earlier 
Discover article, "Why Animals Run on Legs, Not on Wheels" 
(see the bibliography): 

The concept of animals developing wheels for locomotion is not 
so far-fetched. A wheel with a diameter of one foot has a cir- 
cumference a little over three feet. If it were mounted on a 
bone-bearing joint, with flexible veins and arteries, and a con- 
tinuous series of circumferential pads (as on a dog's paw), the 
wheel could be wound back one turn by its internal muscles, 



then placed on the ground and rotated forward two full turns, 
traveling about six and a quarter feet. While one wheel (or pair 
of wheels in a four-legged animal) is driving the creature along 
the ground, the other would be lifted up and rotated back in 
preparation for its next turn at propulsion. At a speed of ten 
m.p.h., the creature would be traveling about 15 feet per sec- 
ond-not an impossible pace. 

Matthew Hodgart, writing from England, reminded me that 
the human animal is capable of moving by repeated somer- 
saults, cartwheels, forward and back flips, and that two per- 
sons can grab each other's feet and roll like a hoop. Hodgart 
quoted these lines from Andrew Marvell's poem "To a Coy 
Mistress": 

Let us roll all our strength, and all 
Our sweetness, up into one ball: 
And tear our oleasures with rough strife, 
Through the iron gates of Life. 

"I don't quite know what's going on here," Hodgart adds. 
Chandler Davis supplemented my list of imaginary crea- 

tures that roll by calling attention to such an animal in George 
MacDonald's fantasy The Princess and Curdie. Ian F. Rennie 
thought I should have mentioned the Wumpetty-Dumps, found 
in The Log of the Ark, by Kenneth Walker and Geoffrey 
Boumphrey. 

Is the narwhal the only animal with a name starting with 
N? Garth Slade cited the numbat, a small marsupial that lives 
in Western Australia. An article in Word Ways (May, 1973) 
gave two other examples: the nutria, a web-footed South 
American aquatic rodent (now also flourishing on the Gulf 
Coast and the coasts of the Pacific northwest), and the nilgai, 
an antelope in India that is commonly called a "blue bull" be- 
cause of i ~ s  bluish-gray color. It is curious that the best one 
can do with common names are the colloquial nag and nanny- 
goat. 

Arthur C. Statter sent his reasons for thinking that the 
drawing by Haeckel which is reproduced in Figure 16 (I picked 
it up from D'Arcy Thompson's On Growth and Form), was one 
of many drawings that Haeckel deliberately faked. The forms 
shown, Statter says, simply do not exist. I have not tried to 
investigate this, and would welcome opinions from radiolaria 
experts. 
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Rufus P. Isaacs, commenting on the impossibility of tes- 
sellating a sphere with hexagons, sent a proof of a surprising 
theorem he discovered many years earlier. If a sphere is tes- 
sellated with hexagons and pentagons, there must be exactly 
12 pentagons, no more and no fewer. 

A soccerball is tessellated with twenty hexagonal "faces" 
and twelve that are pentagons. In 1989 chemists succeeded 
in creating the world's tiniest soccerball-a carbon molecule 
with 60 atoms at the vertices of a spherical structure exactly 
like that of a soccerball (see Figure 25). It is called a buck- 
eyball, or more technically, a buckminsterfullerene, after its 
resemblance to Buckminster Fuller's famous geodesic domes. 
It belongs to a class of highly symmetrical molecules called 
fullerenes. 

The buckeyball is known to geometers as a truncated ico- 
sahedron because it can be constructed by slicing off the 12 
corners of a regular icosahedron. No one yet knows what 
properties this third form of carbon (the other two are graph- 
ite and diamond) might have. Because of the molecule's near 
spherical shape, it might provide a marvelous lubricant. (See 
"Buckeyball: The Magic Molecule," by Edward Edelson, in 
Popular Science, August, 199 1, page 52ff.) 

FIGURE 25 The "buckeyball" molecule-the world's smallest soc- 
cerball. 



FIGURE 26 Two views of the "deceptahedron," an 18-sided delta- 
hedron that is almost convex 



It also can be shown that if a sphere is tessellated with 
hexagons and triangles, there must be an even number of hex- 
agons and exactly four triangles. These results suggest the 
following general question: What are the integral values of k 
such that the sphere can be tessellated with hexagons and 
exactly k polygons of side n? As far as I know, this question 
has not been completely answered, though many special cases 
have been proved. 

Emerson Frost sent photographs of his paper models of 
the eight convex deltahedra, as well as  many of the noncon- 
vex forms. Figure 26 shows his model of the 18-sided delta- 
hedron that is so close to being convex that William McGovern 
(see the bibliography) has dubbed it the "deceptahedron." It 
is a pity that teachers are not as  familiar with the eight con- 
vex deltahedra as they are with the five Platonic solids be- 
cause constructing models and proving the set unique by way 
of Euler's formula are splendid classroom challenges. 
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Charles Sanders Peirce 

I could make the whole matter clear to you as  the noonday sun, if 
it were not that you are wedded to the theory that you can't understand 
mathematics! 

-From a letter of CHARLES SANDERS PEIRCE to WILLIAM JAMES 

M ost of the famous philosophers of the past had little talent for 
mathematics, but there are some notable exceptions. Des- 

c a r t e s ,  Leibniz, Pascal, Whitehead, Russell-they are as em- 
inent in the history of mathematics as in the history of philos- 
ophy. To this small, select band belongs Charles Sanders 
Peirce ( 1839- 19 14), scientist, mathematician, logician and the 
founder of pragmatism. In the opinion of many he was Amer- 
ica's greatest philosopher. 

Peirce was trained in mathematics by his father, Benja- 
min Peirce, the leading U.S. mathematician of his day, but of 
the two, Charles was by far the more original. His contribu- 
tions to logic, the foundations of mathematics and scientific 
method, decision theory and probability theory were enor- 
mous. It is remarkable how many later developments he an- 



ticipated. At a time when the infinitesimals of early calculus 
were in disrepute, Peirce insisted on their usefulness, a view 
only recently vindicated by the invention of nonstandard 
analysis. At a time when determinism dominated physics 
Peirce's doctrine of "tychism" maintained that pure chance- 
events undetermined by prior causes-are basic to the uni- 
verse. This is now essential to quantum mechanics. Even 
Peirce's notion that natural laws are "habits" acquired by a 
growing universe is no longer as eccentric as it once seemed. 
There are respectable models of oscillating universes in which 
random events create a different set of constants at  each 
bounce. As each cosmos explodes it develops laws, some of 
which change as  the universe cools and ages. 

Peirce's influence on William James, a longtime friend 
whom he adored, was much greater than the other way around. 
The basic idea of pragmatism, including the word itself, was 
introduced by Peirce in a popular magazine article. James 
picked up the word and enlarged on Peirce's suggestions in a 
series of brilliant lectures that became the book Pragmatism. 
Peirce was so annoyed by what he considered James's reck- 
less exaggerations that he changed his word to "pragmati- 
cism," a term so ugly, he declared, that no one would kidnap 
it. 

Like all creative mathematicians Peirce enjoyed mathe- 
matics hugely as  a form of intellectual play. As a child he had 
had an intense interest in chess problems, puzzles, mathe- 
matical card tricks and secret codes. This sense of amuse- 
ment runs through all his mature writings. He even coined 
the word "musement" for a mental state of free, unrestrained 
speculation, not quite as dreamy as reverie, in which the mind 
engages in "pure play" with ideas. Such a state of mind, he 
maintained, is the first stage in inventing a good scientific hy- 
pothesis. One meditates on all the relevant data, then pushes 
them around in one's head to form new combinations (like 
pushing chess pieces to solve a chess problem) until comes 
that mysterious flash of insight. 

In a little-known paper titled "A Neglected Argument for 
the Reality of God" Peirce argued that "musement" is not only 
a road to theism but also the only road. It is a leap compara- 
ble to the scientist's conjecture, although it is one of the heart 
rather than of the head. It is not testable, but for those who 
make it, Peirce wrote, it can be as certain as  the belief in 
one's own existence or the existence of others. It  was on such 



matters of "over belief" (James's term) that Peirce and James 
agreed. 

Peirce's recreational approach to mathematics is most 
evident in his views on how mathematics should be taught to 
children. He was convinced that the methods then in use pro- 
duced only dunces. The manuscripts of his three unpublished 
textbooks are filled with novel ways of using puzzles, games 
and toys for introducing mathematical concepts. For ex- 
ample, Zeno's paradoxes lead into discussions of the contin- 
uum and the limit. Projective geometry and the shadows of a 
rotating wheel illuminated by a lamp introduce infinity. Peirce 
recognized-this before 1900!-the great value of elementary 
topology (he called topology the "easiest, most elementary and 
most fundamental branch of geometry") in stimulating a child's 
mathematical imagination. Euler's formula for the skeletons 
of polyhedrons, knot theory, graph theory, the four-color-map 
conjecture (which Peirce tried vainly for decades to prove), 
the Mobius strip--these are only some of the topological top- 
ics Peirce used to arouse student interest. He delighted in 
asking teachers to let him instruct a group of youngsters who 
detested mathematics and seemed incapable of learning it. 
He records that in one case, after about 10 lessons, two of his 
"prize stupids" led the school. 

To teach arithmetic Peirce recommended the constant use 
of counters such as  beans, the early introduction of binary 
notation, the use of 101 cards numbered 0 through 100 and 
other devices now common in grade school instruction. In one 
textbook he wanted to insert a cardboard mechanical gadget 
for doing multiplication. "The objection to inserting this," he 
jotted in a notebook, "would be that the teachers would not 
understand the mathematical principle on which it depends, 
and might therefore be exposed to embarrassing questions." 

The use of playing cards is also recommended. "If you 
will provide yourself, my dear Barbara, with a complete pack 
of cards with a joker, 53 in all, I will make a little lesson in 
mathematics go down like castor-oil in mi!k." Barbara is a 
character in one of Peirce's unpublished textbooks. She is so 
named because "Barbara" was the medieval mnemonic name 
for the syllogism "All A is B, all B is C, therefore all A is C." 

In the introduction to another textbook Peirce devotes 15 
pages to ticktacktoe! The game is used for showing how a 
theorem is first guessed, then tested by manipulating dia- 
grams. "Such are the tools," he writes, "with which the math- 

Charles Sanders Peirce 63 



ematician works." With the huge success of textbooks such 
as Harold R. Jacobs' Mathematics, A Human Endeavor, some 
teachers have caught up with the proposals in Peirce's unsal- 
able manuscripts. 

Like so many other mathematical geniuses-Leibniz and 
Kepler come to mind-Peirce sometimes became over-enthu- 
siastic, almost obsessively so, about some of his creations. 
This may have been partly the result of his working alone, 
without the give and take of the classroom or constant discus- 
sion with colleagues. Peirce did not get along with most peo- 
ple, and in later years his ill-temper and poverty made him a 
lonely recluse. James described him as a "poor cuss" to whom 
no university would give a professorship, a "queer being," a 
"hopeless crank" and a man whose lectures were "flashes of 
brilliant light relieved against Cimmerian darkness!" In a 
touching tribute that Peirce wrote after James died, Peirce 
said, "Who . . . could be of a nature so different from his than 
I? He so concrete, so living; I a mere table of contents, so 
abstract, a very snarl of twine." 

One of Peirce's two major obsessions was his system of 
"existential graphs" for diagramming logic. He was on solid 
ground in seeing the pedagogical value of Venn diagrams for 
solving syllogisms and more general problems in Boolean al- 
gebra, but he wanted to extend such visual aids to every kind 
of logic, including modal logic. His system grew steadily more 
complex, relying always on topological properties of the plane. 
For 20 years he used his curious diagrams as thinking aids, 
and there is no question that he found them enormously use- 
ful. He called them his chef d'oeuvre, and believed that if they 
were "taught to boys and girls before grammar . . . it would 
aid them through all their lives." If logicians would embrace 
his method, he wrote, "there would soon be such an advance 
in logic that every science would feel the benefit of it." Unfor- 
tunately no one else found the graphs useful, although it may 
be too early to give a final verdict. An excellent monograph 
by Don D. Roberts, The Existential Graphs of Charles S. Peirce, 
was published in 1972. 

Peirce's other great eccentricity-perhaps I tread on even 
more dangerous ground in calling it that-was his conviction 
that in every branch of philosophy the most efficient way to 
organize concepts is by way of three fundamental categories 
that he called firstness, secondness and thirdness. Like sci- 
entists, philosophers are compelled to classify ideas, and since 
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philosophy is about everything, their schemes often include a 
list of what they consider the most fundamental categories. 
Aristotle's 10 categories had such an enormous influence on 
Western philosophy that it was not until Kant proposed a dif- 
ferent set that Aristotle's scheme met serious competition. Kant 
had 12 categories (in four triads) that he considered essential 
for describing how human consciousness imposes patterns on 
the vast, ultimately unknowable sea of being. Since Kant there 
have been so many different schemes that "category" has be- 
come a fuzzy and unfashionable word. 

Peirce was firmly persuaded that the most useful of all 
philosophic tools was the ordering of things into monads, dyads 
and triads. Firstness considers a thing all by itself, for ex- 
ample redness. Not a red object, just the pure possibility of 
red: "Redness before anything in the universe was yet red." 
Secondness considers one thing in relation to another, for ex- 
ample a red apple. It is redness linked to an apple, a "brute 
fact" of the actual world. Thirdness concerns two things "me- 
diated" by a third, for example an apple falling from a tree. 
The tree and the apple are linked by the relation "falling from." 
Our mental concept of a red apple is another thirdness be- 
cause it involves apple, red and mind. The universe "out there," 
changing in time, and the inner world of consciousness are 
equally "real" realms of thirdness. 

Peirce applied firstness, secondness and thirdness to every 
branch of philosophy. There is no need, he argued, to go on 
to fourthness, fifthness and so on, because in almost every 
case these higher relations can be reduced to combinations of 
firstness, secondness and thirdness. On the other hand, gen- 
uine thirdness can no more be reduced to secondness than 
can genuine secondness to firstness. Peirce modeled this no- 
tion with a clever bit of graph-theory sleight-of-hand. Let a 
point represent firstness and the end points of a line segment 
represent secondness. Thirdness is symbolized by the ends of 
three line segments meeting a t  a common point like the map 
of a forked road. Why not go on to four, five, six and so on by 
letting more lines join at  a point? Because we can always re- 
duce such higher "stars" to thirdness by substituting triadic 
graphs for the central point as shown in Figure 27. There is 
no way this can be done, however, to reduce a triadic graph 
to one with two end points. 

Peirce regarded his three categories as his greatest con- 
tribution to philosophy. He denied the charge that he was in- 



FIGURE 27 How Peirce reduced fifthness to thirdness 

fatuated by the number three. He admitted having a Hegelian 
"leaning for 3," but he insisted that this was because third- 
ness had so many applications. 

"The most fundamental fact about the number three," 
Peirce wrote, "is its generative potency. . . . So prolific is 
the triad in forms that one may easily conceive that all the 
variety and multiplicity of the universe springs from it." He 
called his graph for the triad "an emblem of fertility in com- 
parison with which the holy phallus of religion's youth is a 
poor stick indeed." I do not know whether Peirce was familiar 
with the following statement by Laou-tsze, five hundred years 
before Christ: "Tao hath produced one, one hath produced two, 
two hath produced three, and three have produced all things." 

This is not the place to discuss the fertility of Peirce's 
categories, and so I content myself with saying that in Peirce's 
day the only eminent philosopher who shared his enthusiasm 
for one, two and three was Josiah Royce. James complained 
that he never could understand Peirce's categories. Among 
today's philosophers of note I know of only two enthusiasts, 
Eugene Freeman and Charles Hartshorne. "I believe," Hart- 
shorne has written, "that all things, from atoms to God, are 
really instances of First, Second, Third, and that no other 
equally simple doctrine has the power and precision of this 
one. " 

Let us turn to something less controversial: a card trick. 
In the April, 1908, issue of The Monist Peirce had an article 
on "Some Amazing Mazes" that opened with an apt descrip- 
tion from Milton's Paradise Lost (Book V ,  623-624) of a "mys- 
tical dance" of angels: 



… Mazes intricate,
Eccentric, intervolv’d, yet regular
Then most, when most irregular

they seem.

“About 1860,” Peirce begins, “I cooked up a mélange of effects
of most of the elementary principles of cyclic arithmetic; and ever
since, at the end of some evening’s card-play, I have occasionally
exhibited it in the form of a ‘trick’… with the uniform result of
interesting and surprising all the company, albeit their mathe-
matical powers have ranged from a bare sufficiency for an altru-
istic tolerance of cards up to those of some of the mightiest math-
ematicians of the age, who assuredly with a little reflection could
have unraveled the marvel.”

By cyclic arithmetic Peirce meant what is today called congru-
ence arithmetic. Some teachers call it “clock arithmetic” because
it is so nicely modeled by a clock. For example, 2 is equal to l4,
modulo 12. This means that if you divide 2 and 14 by 12 (the
modulus) the remainder in each case is 2. In clock terms, at 14
hours past noon the hands of the clock are in the same position
as they are two hours from noon.

The first of Peirce’s card tricks, reprinted in Volume 4 of his
Collected Papers as “The First Curiosity,” is surely the most compli-
cated and fantastic card trick ever invented. I cannot recommend
it for entertaining friends unless they have a passion for number
theory, but for a teacher who wants to “motivate” student interest
in congruence arithmetic it is superb. There is no way to prove
that the trick always works without learning a great deal about
“cyclic arithmetic,” including a famous theorem of Fermat’s about
prime numbers.

Before reading further, the reader is urged to get a deck of
cards and carefully follow the procedure. Remove all the hearts
and arrange them in serial order from ace to king, the ace on top
of a face-down packet. Do the same with spades, except for the
king, which is not used. Thus the spade packet consists of 12 face-
down cards from ace on the top to queen on the bottom. Put the
red packet face-down on the table. Hold the black packet face-
down in one hand.

Deal the black cards face-up onto two piles. (Whenever
cards are dealt into piles they are held face-down and dealt
face-up, from left to right, starting on the left.) The last card
(the queen) is discarded by placing it face-up to one side to
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form a discard pile. Substitute for it the top card (the ace) of 
the red packet, putting it face-up on the second pile in place 
of the discarded queen. Assemble the two piles by picking up 
the pile farthest to the left and dropping it face-up on the sec- 
ond pile. Turn the black packet (now containing one red card) 
face-down and repeat exactly the same procedure. This time 
the red deuce replaces the last black card (the jack). The jack 
goes face-up on the previously discarded black queen. The 
procedure is continued until it has been performed 12 times 
in all. You may be surprised to discover that you now hold an 
all-red packet, and that the discard pile contains all the black 
cards. Pick up the remaining king of hearts and add it to the 
bottom of the face-down red pile. 

To make sure you have done all this properly, check the 
red packet. Held face-down, and reading from the top, the 
order of cards should be: 7 ,  8, J, 9, 4, Q, 6, 10, 3, 5, 2, A, K. 
The black packet should be: Q, J, 9, 5, 10, 7, A, 2, 4, 8, 3, 6. 

The two packets are correlated in a curious manner. The 
value of the card at  the nth position from the top of either 
packet gives the position from the top of the other packet of 
a card with the value n. For example, where is the jack of 
spades? Counting the jack as 11, look at the 1 1 th card in the 
red packet. It is a 2. Check the second card in the black 
packet. It is the jack of spades. Where is the five of hearts? 
The fifth card in the black packet tells you. It is a 10. The 
10th card in the red packet is the five of hearts. 

Before you reveal this remarkable correlation to your au- 
dience, however, the red packet is apparently randomized by 
the following procedure. First allow the packet to be cut as 
often as anyone wants. Hold it face-down and ask someone to 
name a number from 1 through 12. Call the number k. Deal 
the cards face-up into k piles, then assemble them by starting 
with any pile designated. The assembled packet can then be 
cut again and the procedure repeated as often as you like, 
either with the same k or a different one. One would suppose 
that cutting, dealing into k piles, assembling and cutting, and 
repeating this routine many times with any k requested, would 
hopelessly mix the red cards. Astonishingly, thanks to the 
theorems of congruence arithmetic, the correlation of the two 
packets is conserved! 

The only difficult part of the mixing procedure is this. 
When the k piles are assembled, you must do it in a precise 
manner that depends on the value of k. Think of the row of 
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piles as being circular, the last pile adjacent to the first, so 
that you can count "around" the row in a direction either 
clockwise or counterclockwise. Note the pile on which the 
last card was dealt. In your mind call the end pile on the right 
zero and count to the pile that got the last card. Count clock- 
wise or counterclockwise, whichever is shorter. 

Suppose you have dealt the red cards into five face-up 
piles. The middle pile will get the last card, as shown in Fig- 
ure 28. It is second from the right, counting counterclockwise 
from the right end. This means that you must assemble the 
cards as follows. Pick up any pile and place it face-up on the 
second pile to the left, counting counterclockwise. Pick up 
the enlarged pile and place it on the second pile leftward, and 
continue until there is a single packet. The numbers under 
the piles in the illustration show the order of assembly if you 
start with the first pile on the left. 

It is important to remember that in gathering the piles 
you count positions, not the actual piles. For some k the pile 
getting the last card is adjacent to the rightmost pile. This 
makes the assembly simple because the piles go on adjacent 
piles. But if there is a wider separation (as in the case of nine 
piles where the shortest distance is 4) it takes a bit of expe- 
rience to assemble the piles rapidly. Figure 29 shows the or- 
der of picking up nine piles if you start with the second pile 
from the left. In this case you proceed clockwise because the 
shorter count from the right end to the pile that got the last 
card is a clockwise count. As you are practicing you can mark 
the positions with a row of pennies. After a while you can 
dispense with the markers. 

The assembled packet can always be cut as many times 

Last card dealt 

\ - - : - D O  1 3 5 2 4 

FIGURE 28 How to assemble five piles of cards in Peirce's card 
trick 



Last card dealt 

4 2 9 7 5 

FIGURE 29 How to assemble nine piles in Peirce's card trick 

as it is desired and the mixing repeated with a different num- 
ber of piles. When everyone is satisfied that the red pile has 
been thoroughly "shuffled," it is necessary to give both the 
red and black piles a single cut. Cut the red pile to bring the 
king to the bottom when the pile is face-down. Peirce sug- 
gests remarking that since there is no king of spades, you will 
cut the red pile to bring the king to the bottom "and so render 
any searching for that card needless." As you do this, note 
the packet's top card. Suppose it is a 4. The black pile must 
now be cut so that its ace is fourth from the top. The two piles 
will then be correlated as before! 

To dramatize the correlation Peirce suggests dealing the 
black cards in a face-down row. Ask anyone to name a red 
card. Suppose he says the 7 of hearts. Tap the black cards 
one at a time, counting from 1 to 7, and turn the seventh card 
face-up. Note its value n. Count to the nth card in the red 
packet. I t  will be the 7 of hearts. 

"The company never fail to desire to see the thing done 
again," writes Peirce. After revealing a number of cards to be 
at  the indicated positions, you can repeat the trick by mixing 
the red cards again with several deals, then adjust the two 
packets by the required cuts. "If you wish for an explanation 
of it," Peirce concludes, "the wish shows that you are not 
thoroughly grounded in cycle arithmetic." He refers his read- 
ers to a book by Richard Dedekind, but adds that on another 
occasion he may write a little essay on the topic. 



This "half promise" he "half redeems," as he puts it, in an 
article in the July, 1908, issue of The Monist, also reprinted 
in the Collected Papers. Peirce's explanation of the trick runs 
to 58 pages! The essay is pure Peirce, complete with gener- 
alizations and formulas, horrendous existential graphs that look 
like abstract art and delightful digressions on such things as 
the value of keeping notes on file cards, logic machines, the 
meaning of continuity, how mind influences matter and the 
nature of free will and time. 

In 1958 Alex Elmsley, a London magician, pointed out in 
Ibidem (a Canadian magic periodical) that in the first phase of 
Peirce's trick it is not essential that the last black card each 
time be the one that is replaced with a red card. The card to 
be replaced can be at  any position in the packet. Thus you 
may allow someone to choose any number n, from 1 through 
12, then on each deal you replace the nth card with a red one. 

Peirce's writings are now gathered into 13 volumes, six 
edited by Charles Hartshorne and Paul Weiss, two by Arthur 
W. Burks and five by Carolyn Eisele. It  is a triadic scandal 
(1) that the bulk of Peirce's mathematical papers were not 
published until 1976, when Mrs. Eisele skillfully put them 
together for The New Elements of Mathematics, (2) that these 
books have received almost no advertising or reviews and (3) 
that the set costs more than $400. 

Charles Sanders Peirce 

Many great philosophers have had a compulsion to carve ex- 
perience into what they consider its most fundamental as- 
pects, basic genera that have nothing in common with one 
another. Aristotle introduced the term "category" to refer to 
his ten basic divisions. For Kant there were four basic cate- 
gories, each composed of triads, making twelve categories in 
all. Hegel found more than 200, but liked to divide all histor- 
ical change into thesis, antithesis, and synthesis. The lower 
integers from 1 through 5 have always been the most popular 
for the simple reason that they are the simplest. 

Consider oneness. Pre-Socratics liked to think of every- 
thing as  made of one substance: earth, air, fire, or water. "All 
is one" is a favorite notion of pantheists and Eastern reli- 

71 



gions. For materialists, everything is matter. For idealists, 
everything is mind. 

Twoness is another favorite. Being and nothing, mind and 
matter, yin and yang, body and soul, God and the universe, 
and so on. 

Threeness, too, has bedazzled thinkers. A delightful sum- 
mary of threeness can be found under the heading of "Trinity" 
in W. V. Quine's recent book Quiddities. "A predeliction for 
threes," he begins, "has invested song and story. We have the 
Three Fates, the Three Graces, the Three Magi, the Three 
Musketeers (actually four), the Three Bears, the Three Little 
Maids from School." 

Quine goes on to cite Kant's various triads, Hegel's three 
movements of history, Peirce's triads, and Charles Morris's 
division of semiotics (theory of signs) into syntax, semantics, 
and pragmatics, a division taken over by Rudolph Carnap. 
Mathematical philosophy, Quine continues, is either formal- 
ism, logicism, or intuitionism. We have such phrases as lib- 
erty, equality, and fraternity; life, liberty, and the pursuit of 
happiness; faith, hope, and charity; and endless other trip- 
lets. In religion we have the Christian trinity, though the 
"tenuous" quality of the Holy Ghost suggests "trinity for trin- 
ity's sake." The Hindu trinity of Brahma, Siva, and Vishnu, I 
should add, doesn't count because above them is the unknow- 
able Brahman. 

"There is something stable and comforting about three- 
ness," Quine writes, "that may explain its popularity." A stool 
can't have two legs, and four legs are wobbly on an uneven 
floor, but a three-legged stool is always stable. This is be- 
cause three points always lie on a plane, whereas two points 
lie on many planes, and four need not lie on a plane. More- 
over, Quine adds, models of triangles are rigid whereas models 
of higher polygons flex at their corners. 

Peirce was wild about threes. All sorts of triads lace his 
speculations. Exactly what he meant by firstness, second- 
ness, and thirdness is seldom clear because he kept changing 
his mind about them. In The Century Dictionary, firstness, 
secondness and thirdness are among the hundreds of mathe- 
matical terms defined by Peirce. Firstness is anything that 
can't be reduced to more basic parts. Secondness is a dyadic 
relation that can't be reduced to oneness. Thirdness is a triadic 
relation that can't be reduced to twoness. 

The best introduction to all this is Book I11 of the first 
volume of Peirce's Collected Papers. It is a rough draft for a 



book to be called A Guess at the Riddle in which Peirce in- 
tended to apply 1, 2, 3 to everything, including theology. "This 
book, if ever written, as it soon will be if I am in a situation 
to do it, will be one of the births of time." 

Peirce recognized "that higher numbers may present in- 
teresting special configurations from which notions may be 
derived of more or less general applicability." Different num- 
bers have their champions: "Two was extolled by Peter Ra- 
mus, Four by Pythagoras, Five by Sir Thomas Browne, and 
so on. For my part, I am a determined foe of no innocent num- 
ber; I respect and esteem them all in their several ways; but 
I am forced to confess to a leaning to the number Three." Again: 
"Other numbers have been objects of predeliction to this phi- 
losopher and that, but three has been prominent at  all times 
and with all schools." 

Peirce struggled mightily to show that relations involving 
four or more things can always be reduced to triads. No num- 
ber of straight roads put end to end can have more than two 
ends, he wrote, but a road with any number of forks can (as 
previously explained) be built out of triads. Another example 
concerns A selling C to B for a price of D. This may look like 
a quadrad, but for Peirce it was a compound of two triads that 
involve a common event E, namely the sale. Thus E relates 
seller A to buyer B, and E also relates the object C to its 
price D. 

"Every higher number," Peirce wrote, "can be formed by 
mere complications of threes." Again: "Any number, however 
large, can be built out of triads, and consequently no idea can 
be involved in such a number, radically different from the idea 
of three." What on earth does this mean? It is trivially true 
that 7 can be expressed by 

Charles Sanders Peirce 

but this formula gives 7 when any positive integer n is substi- 
tuted for each 3. In similar ways any integer can be repre- 
sented by combinations of any other integer. 

Peirce admitted that during early stages of his work he 
would have considered the book he wanted to write "too strong 
a resemblance to many a crack-brained book that I had laughed 
over," but with deeper study he came to appreciate the power 
of his triads. In the opinion of almost everybody else except a 
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handful of dedicated Peircians, Peirce's youthful attitude 
toward his book was the correct one. 

It is easy to think of relations involving more than three 
things that cannot, in any reasonable way, be reduced to 
thirdness. Consider the complete graph of four points-a graph 
modeled by the edges of a tetrahedron. Each point is joined 
to the other three. Such a graph may symbolize a variety of 
unreducable fourthness. Four stars can form a gravitational 
system. The movement of any one star is governed by the 
movements and masses of the other three. Put another way, 
this four-body system is radically altered if any star is re- 
moved. For another example, consider a family of father, 
mother, son, and daughter. Their behavior obviously depends 
on how the four interact. Everything changes if one member 
of the family dies. The relations of four nations can't be re- 
duced to threeness, nor can the four lines of a quatrain of 
poetry, the four notes of a chord, the many notes of a melody, 
four figures in a painting, the four legs of an elephant, or the 
six legs of a spider. 

The only reason for stopping at three is that relations be- 
yond three get more complicated. Two is company, three a 
crowd. There is indeed a big jump from two to three, as Peirce 
perceived, but there are also big jumps from three to four, or 
four to five. In life, in the universe, and in ideas there are 
clusters of any number of things so bound together that any 
subset is mediated by all the other elements. The universe is 
just too rich to force into 1, 2, or 3. 

The late Bruno Bettelheim, an unbending Freudian, wrote 
a curious book about fairy tales called The Uses of Enchant- 
ment. In analyzing "Goldilocks and the Three Bears" Bettle- 
heim revealed the number that he said represents sex in the 
unconscious mind. Is this mysterious number 1, based on the 
fact that every person has just one sex organ? No. Is it two, 
based on the fact that it takes two to tango? No. The number 
is 3! Why? Because, Bettleheim assures us, "each sex has three 
visible sex characteristics: penis and the two testes in the 
male; vagina and the two breasts in the female." That is the 
hidden meaning of the three bears in the familiar story. When 
Goldilocks peeked at the three bowls of soup, the three chairs, 
and the three beds, the tale "evokes associations to the child's 
desire to find out the sexual secrets of adults." 

This is neither science nor literary criticism, but crack- 
pot psychoanalysis. Peirce's attempt to reduce everything to 



1, 2, or 3 is almost as  bad. Like his existential graphs, it is 
an eccentric phase of his thinking that is best forgotten. 

Charles Sanders Peirce 

On Peirce's Three Categories 
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Twisted Prismatic Rings 

T he well-known Mobius band, formed by giving a paper strip a 
half twist and joining the ends, is a model of an abstract sur- 
face of zero thickness. No paper, however, is zero thick. The 
cross section of a Mobius band actually is a rectangle, very 
much longer than it is wide. The band itself may be regarded 
as  a four-sided prism, twisted so that one end has rotated 180 
degrees before the two ends are joined. Viewed in this way it 
is a solid ring with two distinct "faces." One face is the flat 
surface of the band, which circles the ring twice. The other 
is the band's narrow but also flat edge, which also circles the 
ring twice. 

Over the years I have received dozens of letters from 
readers who independently noticed that models of Mobius 
bands actually are twisted prisms and who generalized such 



rings by considering prisms with cross sections that are reg- 
ular polygons with any number of sides. Although such struc- 
tures have many strange properties, surprisingly little is known 
about them. 

There is no agreed-on name for these structures, so let us 
call them prismatic rings. Let n be the number of sides of the 
polygon cross section, and let k be the number of lln turns 
the prism is given before its ends are joined. If the prism is 
not twisted, then k = 0. If it is twisted (in either direction) so 
that each side joins an adjacent side, then k = 1.  If each side 
joins the next side but one, then k = 2, and so on. 

The easiest prismatic ring to visualize is the ring with a 
square cross section. If k=O (no twists), the ring obviously 
has four sides and four edges. If k =  1 ,  we get the beautiful 
solid in Figure 30. (It is a photograph of a wood carving by 
Roger I. Canfield, who sent it to me after reading my Decem- 
ber 1968 column, in Scientific American, on Mobius bands.) 
Like the Mobius surface, it has only one "face" and only one 
edge. 

Twisted Prismatic Rings 

FIGURE 30 A twisted prismatic ring with one face and one edge 
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A 1949 science-fiction story by Theodore Sturgeon (see 
the bibliography) involved a man who was given an interest- 
ing intelligence test. He was placed inside an n = 4, k = 1 pris- 
matic ring where artificial gravity fields kept him attached to 
the "floor." The test was to determine if he was smart enough 
to deduce the structure of the corridor as he walked around 
it. 

When n = 4  and the ring is given two twists, it becomes 
topologically equivalent to the familiar Mobius band viewed 
as a solid: two-faced and two-edged. Three twists (like one 
twist the other way) produce one face and one edge, and four 
twists bring the structure back to four faces and four edges. 
On all prismatic rings the faces equal the edges in number, 
so henceforth we shall consider faces only. The sequence of 
numbers for the faces repeats periodically when the twists 
exceed n. Thus a square prism with five twists has the same 
number of faces as  one with a single twist. Note also that all 
twisted rings are mirror-asymmetric and therefore have mir- 
ror-image counterparts. 

Let us generalize to prismatic rings with cross sections 
that are regular polygons of n sides. Given k twists it is easy 
to predict the number of faces. It is the GCD (greatest com- 
mon divisor) of n and k. From this fact several interesting 
properties follow. If the cross section has a prime number of 
sides, the number of faces is n only when k (the number of 
twists) is 0 or any multiple of n. Otherwise the ring has only 
one face. If n is not prime, the ring has one face only when n 
and k are prime to each other (have no common divisor). The 
table in Figure 3 1 (sent to me in 1964 by John Steefel) gives 
the number of faces on prismatic rings with cross sections 
that have two through 15 sides and that have been given zero 
through 15 twists. Note that the Mobius strip appears here 
as a degenerate prismatic ring with a two-sided cross section. 

Now the fun begins. We all know that crazy things hap- 
pen to twisted bands when they are cut down the middle. 
Equally crazy things happen when twisted prismatic rings are 
cut in various ways. Figure 32, top, shows eight ways a ring 
with a square cross section can be cut. 

Consider the first way, a simple bisection down the middle. 
If k = 0,  the result obviously is two separate rings, each with 
four faces and no twists. If k = 1, the cutting goes twice around 
the ring, and the result is the same as if two perpendicular 
cuts are made as  shown in the second diagram. This opera- 
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k = Number of twists 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

FIGURE 31 A table showing the number of faces when n and k 
are known 

FIGURE 32 Some ways to cut an n = 4  ring (top) and some ways 
to cut an n = 3 ring 



tion forms a single ring four times as  long as  the original, with 
four faces and 16 twists of 90 degrees each. 

When k  = 2, the cutting forms a single ring with four faces 
and eight twists, but now the ring is only twice the size of the 
original. When k = 3, the cutting goes around a second time to 
produce a knotted single ring four times as long as the origi- 
nal. I t  has four faces and 24 twists. Two interlocked rings 
result when k  = 4, each the same size as the original and each 
with four faces and four twists. 

The cases of k  = 2  and k  = 4 can be modeled with paper 
strips, viewing them as solids. As we have seen, when k =  2, 
we have the familiar Mobius band, and k = 4  is a paper band 
with two half twists. Simply cut the strips down the middle, 
then examine the results, remembering that the edges are 
considered faces. To experiment with k  = 1 or k  = 3 an actual 
solid model is helpful. The simplest way to make such a model 
is with "salt ceramic": a mixture of one cup of table salt, half 
a cup of cornstarch and three-fourths of a cup of cold water. 
Put it in a double boiler, heat it and stir until it thickens and 
follows the spoon. Let it cool on wax paper. Knead out the 
lumps and shape the substance into strips about eight inches 
long, with four faces about half an inch wide. Form into the 
desired ring, smooth out the cracks with water and let dry. If 
you like, you can paint each face a different color before you 
start cutting. 

As we have seen, when k  = 1 or k  = 3, the methods of cut- 
ting in the first two diagrams are the same. When k = 2  or 
k = 4 ,  they are not the same. Here again we can model the 
double cut of the second diagram easily with paper strips. 
Simply put one strip on another and give the double strip either 
one half twist or two before joining the edges. Such strips, 
viewed as solids, are the same as rings with two or four quarter 
twists that have been bisected. Cutting these rings down the 
middle is then the same as adding a second cut perpendicular 
to the first one. In this way we see that if k = 2 ,  and the ring 
is bisected both ways, the result is two interlocked rings (one 
ring is twisted twice around the other), each four-faced, twice 
as long as the original and twisted eight times. If k = 4, the 
result is four rings, all interlocked. Each is the same size as 
the original, with four faces and four twists. 

Interested readers may wish to experiment with some 
higher values for k. If k =  6, for example, and the ring is bi- 
sected, the result is a single ring tied in an overhand knot. 
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Also open to exploration are the other ways of cutting the n = 4 
ring, and the cutting of rings with cross sections that are other 
than square. Triangular-cross-section rings are easily made 
with salt ceramic, and Figure 32,  bottom, shows four ways to 
cut them. Rings with pentagonal and still more complex cross 
sections are too difficult to model and cut, but they can be 
investigated, as Matthews explains, by using appropriate dia- 
grams. 

Are there formulas that, given n and k and the method of 
cutting, will predict the number of twists in the resulting ring 
or rings? Undoubtedly there are, but I know of nothing pub- 
lished along such lines. 

So far we have considered only prismatic rings bent into 
circular shapes. We can, however, form them in such a way 
that they are toroidal polyhedrons. What we have called a ring's 
"face" will then consist of flat four-sided polygons that are 
joined along their edges in a circular chain. For example, 
Figure 33 shows a prismatic ring (n=4) of this type. The il- 
lustration is based on a photograph in a 1974 article in Span- 
ish on such structures by Gonzalo Velez Jahn of the architec- 
ture department of the Central University of Venezuela. The 
ring has a single twist; therefore it models a prismatic ring of 
square cross section that has one face (in our former meaning 
of "face") and one edge. 

FIGURE 33 



Such polyhedral prismatic rings suggest a variety of dif- 
ficult problems that are only beginning to be explored. Scott 
Kim, for example, has proved a number of remarkable theo- 
rems about polyhedral rings. (Kim is an American mathema- 
tician best known for his book Inversions, W. H. Freeman, 
1989.) They are closely related to a class of "impossible ob- 
jects," such as the Penrose triangle shown at the left in Fig- 
ure 34, and its rectangular version on the right. 

It is conceivable that figures such as these are not really 
impossible but are drawings of twisted polyhedral prismatic 
(n  = 4) rings. D. A. Huffman, in his paper "Impossible Objects 
as Nonsense Sentences," was the first to devise algorithms 
for proving whether or not such figures are possible. 

There are informal proofs for specific figures. Here, for 
instance, is Huffman's impossibility proof for the Penrose tri- 
angle. We first make some reasonable assumptions: 

1. The straight lines in the drawing are straight lines on 
the actual model. 

2. Regions that appear flat in the drawing actually are plane 
surfaces. 

3. Surfaces A and B intersect at line 1, surfaces B and C 
intersect at  line 2 and surfaces C and A intersect at  line 3. 

Three planes, no two of them parallel, will either inter- 
sect along three parallel lines, or intersect at  a common point 
P. Therefore each of the three intersection lines must pass 
through P. Note, however, that lines 1, 2 and 3-the three 
lines of intersection--cannot meet at  one point. Therefore the 
figure is not possible. It is amazing that this simple proof re- 

FIGURE 34 Two impossible polyhedral prismatic rings 



quires no information about the hidden faces or edges of the 
picture. An impossibility proof for the rectangular "window" 
is even simpler because only sides A and B need be con- 
sidered. Face C is irrelevant. 

Kim called my attention to the solid shown in Figure 35, 
one of several simple impossible polyhedrons considered by 
Huffman. Here line 1 is common to surfaces A and B, line 2 
is common to surface B and the hidden back surface, and line 
3 is common to the hidden surface C and surface A. On the 
basis of the same argument as before these three lines must 
meet at  a common point. As the dotted extensions indicate, 
however, they do not. Hence the figure is impossible. It is 
strange, Kim observes, that this figure looks so clearly pos- 
sible in contrast to the Penrose triangle, although the reason 
for the impossibility of the two figures is the same. Huffman 
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FIGURE 35 An impossible polyhedron 
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develops a general algorithm, based on directed graphs, for 
testing all such figures. 

The problem of distinguishing possible from impossible 
polyhedral "windows" has also been investigated, along dif- 
ferent lines, by Thaddeus M. Cowan, a psychologist. Basing 
his analysis on braid theory, Cowan has devised a systematic 
way of generating and classifying such figures and demon- 
strating various properties. (See his two papers cited in the 
bibliography.) 

Polyhedral prismatic rings that have square cross sec- 
tions are easily built from unit cubes. One can rubber-cement 
together sugar cubes or children's wood blocks, or use the 
plastic snap-together cubes available from supply houses for 
mathematical teaching aids. Here is a delightful problem sug- 
gested by Kim that makes use of unit cubes. 

The prismatic ring in Figure 33 clearly can be con- 
structed with 22 unit cubes as indicated. Our problem is to 
model a figure with the same properties--one "face" and one 
"edge"-but to do it with the smallest possible number of cubes. 

Each cube must have just two faces joined to other cubes 
to form the prismatic chain. The light lines, which indicate 
these joins, are not of course part of the model's edge. The 
single face of the ring circles the polyhedral torus four times, 
and it is bounded by a single edge that also circles the ring 
four times. We make one proviso: no point on the edge may 
touch any other point on the edge. This is to keep the toroid's 
hole from being partly or entirely closed. 

Figure 36 shows a beautiful wood model of a polyhedral 
ring, of square cross section, in the shape of a triangle. It was 
made by Ikuo Sakurai of Tokyo. A section of the model can 
be twisted to four positions. Down the middle of each face 
runs a groove inside which a red marble is trapped. Thus the 
model can be set for any of its four forms. Then by tipping the 
triangle you can roll the marble once, twice, or four times 
around the toroid. 

Howard P. Lyons, a Toronto accountant, once proposed 
the following solid prismatic ring. It's outside surface has a 
square cross section with one twist. An interior hole that cir- 
cles the ring also has a square cross section with one twist, 
but the twist goes the other way. In a letter to me, Lyons 
wonders what properties this bizarre ring has. I take my cue 
from Mark Twain. He once responded to a man who had asked 
an unusually complicated question about the speed of a can- 
nonball by writing, "I don't know." 



FIGURE 36 A Japanese model of a polyhedral torus adjusted to 
display a single side and a single edge 

Twisted Prismatic Rings 

The unique 10-cube solution (not counting rotations and re- 
flections) is given in Figure 37. 
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Lawrence H. Peavey, Jr., of Sudbury, Massachusetts, sent 
me a copy of his U.S. Patent No. 3,010,425 (November 28, 
196 1 ) which describes ways in which twisted prismatic rings 
can be used for what are called "loop scale" devices that mea- 
sure or control instruments. 

Carlo Sequin, at  the University of California, Berkeley, 
was intrigued by Howard Lyons's suggestion about nested 



FIGURE 37 The solution to a twisted ring problem 

prismatic rings. See the bibliography for his 1980 paper in 
which he explores the properties of such bizarre structures 
when the inner and outer surfaces are joined, as in a Klein 
bottle. 

L. Richardson King, at  Davidson College in North Caro- 
lina, was equally intrigued by my question: "Are there for- 
mulas that, given n and k and the method of cutting, will pre- 
dict the number of twists in the resulting ring or rings?" He 
sent some fascinating preliminary results which so far have 
not been published. 

When this chapter first appeared as a Scientific American 
column, I cited Charles J. Matthews's 1972 articles, entitled 
"Some Novel Mobius Strips," as the earliest English refer- 
ence to the topic that I knew. H. T. McAdams, a scientist at  
Calspan Corporation, in Buffalo, sent me a copy of his 1948 
article (see the bibliography) in which the rings are dis- 
cussed, perhaps for the first time. Shortly after his article ap- 
peared, his table of numbers, relating properties of the rings 
to Eratosthenes's sieve for finding primes, appeared on the 
cover of The Fantopologist, a science-fiction "fanzine." It is 
essentially the same as  the table in Figure 3 1. This may have 
been where Ted Sturgeon got the idea for his 1949 story. 
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wo volumes of Percy Alexander MacMahon: Collected Papers 
have been published. Edited with skill and admiration by 
George E. Andrews, a mathematician at Pennsylvania State 
University, the collection is one of a distinguished series of 
papers of modern mathematicians that is being published by 
the MIT Press under the general editorship of Gian-Carlo Rota, 
an MIT mathematician. 

We honor MacMahon in this chapter because he was 
keenly interested in recreational mathematics. His fame rests, 
however, on more "serious" work. Indeed, he was one of the 
great pioneers of combinatorics, particularly in the field of 
number-partition theory. His two-volume magnum opus Com- 
binatory Analysis has been reprinted by the Chelsea Publish- 
ing Company, but as Andrews points out, that work refers to 
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fewer than a fifth of MacMahon's papers. More than a fourth 
of his papers appeared after Combinatory Analysis was writ- 
ten. It is remarkable how often MacMahon's results are redis- 
covered by mathematicians who until now have not had easy 
access to his voluminous writings. 

"With his moustache, his British 'Empah' demeanor and 
worst of all his military background," writes Professor Rota 
in an introduction to the Collected Papers, "MacMahon was 
hardly the type to be chosen by Central Casting for the role 
of the Great Mathematician." He was born in 1854 on the 
island of Malta, the son of a British brigadier. He joined the 
Royal Artillery in his late teens, served for a time in India 
and then for many years taught mathematics and physics at  
the Royal Military Academy. For 14 years before his death in 
1929 Major MacMahon was Deputy Warden of the Standards 
under the Board of Trade. 

It is hard to understand why until recently no publisher 
has reissued MacMahon's long out-of-print New Mathematical 
Pastimes, published by Cambridge University Press in 192 1. 
(It is included in the second volume of Collected Papers.) The 
book deals with tiling theory and repeated patterns, now a 
lively research topic. MacMahon deals with the subject by 
way of what he calls a generalized domino. Ordinary domi- 
noes are rectangles with numbered ends. They are employed 
in a variety of games where they must be placed in chains so 
that all joined ends have the same number. MacMahon gen- 
eralized ordinary dominoes to convex polygons that tile the 
plane. All edges of the polygonal dominoes are labeled with 
numbers or colors in all possible ways (given the number of 
labels) to form a complete set of polygons no two of which are 
alike. (Reflections are included in each set but rotations are 
not.) 

An early column of mine on MacMahon's 24 color squares, 
representing all the ways of giving an edge one of three col- 
ors, is reprinted in my New Mathematical Diversions from Sci- 
entific American. A later column on MacMahon's 24 color tri- 
angles (using four colors for the edges) is in my collection, 
Mathematical Magic Show. MacMahon's New Mathematical 
Pastimes contains a wealth of problems based on these and 
other sets of edge-colored polygons, including pentagons and 
hexagons. The book also explains how the edges of such tiles 
can be altered to produce beautiful periodic patterns of the 
kind seen in mosques and in M. C. Escher's tessellation pic- 



tures of birds and other creatures. Some remarkable recent 
discoveries about nonperiodic tiling resulted from the work of 
Hao Wang and others on nonperiodic tiling with MacMahon 
color squares. 

Most of MacMahonls work was centered on symmetric 
functions, or functions that are unaltered when any two vari- 
ables are interchanged, for example abc + a2 + b2 + c2. (Inter- 
changing a and c gives cba + c2 + b2 + a2,  clearly the same func- 
tion.) It is easy to see how the polygons in a complete set of 
MacMahon color polygons are related by a symmetric func- 
tion. For example, suppose we have a set of 24 color squares 
representing all the ways of coloring each edge red, blue or 
green. If we permute the colors any way we like, making, say, 
all the red edges green, all the green edges blue and all the 
blue edges red, we end up with exactly the same set of tiles 
as before. It is this permutation symmetry that underlies the 
beautiful combinatorial properties of the set. 

Color dominoes obviously generalize to solids of three or 
more dimensions. If each of the n faces of a regular solid is 
given one of n colors, in how many different ways (not count- 
ing rotations but including reflections) can the solid be n-col- 
ored? The answer is given by the simple formula F!/2E, where 
F is the number of faces and E is the number of edges. 

Of the five Platonic solids, only the cube tiles space, and 
so it is natural that MacMahon chose to explore sets of "color 
cubes" and their domino-tiling properties. A cube has six faces 
and 12 edges. Plugging these values into the formula gives 6!/ 
24, or 30. Thus there are just 30 ways to color a cube with 
six colors so that all six appear on each cube, with each face 
a single color. Such a set is known as the 30 color cubes, and 
MacMahon was the first to investigate its properties. He in- 
troduced the set in a lecture given in 1893 and later dis- 
cussed it briefly in New Mathematical Pastimes. 

Unfortunately no set of the 30 color cubes can be bought 
(as far as I know they have never been marketed), but if you 
will go to the trouble of obtaining 30 wood cubes and coloring 
their faces correctly (an alternative to painting is to paste col- 
ored spots on the faces), you will have a marvelous educa- 
tional toy. For someone interested in combinatorics, explor- 
ing the properties of the 30 cubes can lead into fascinating 
corners of the subject. 

The coloring of the 30 cubes is shown in Figure 38. The 
cubes are arranged in a six-by-six matrix with one of the di- 
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agonals left blank for reasons that will be explained below. 
The interior square of each figure in the matrix is the top face 
of a cube. Each cube face is colored and is marked with a 
corresponding number, and the bottom face of each cube is 
assigned the missing color and number. Obviously it does not 
matter what color is assigned to each number. 

By labeling the rows with uppercase letters and the col- 
umns with lowercase letters we can identify each cube by a 
pair of letters, one uppercase and one lowercase. Each cube 
has a mirror-image partner (the cube you would see reflected 
if you held a cube up to a mirror) that can be quickly located 
because partners are placed symmetrically with respect to the 
blank diagonal. Thus the mirror image of cube Ab is cube Ba, 
the mirror image of cube Ec is cube Ce and so on. 

FIGURE 38 John Horton Conway's matrix for the 30 color cubes 



If the cubes are scattered on a table, finding the mirror- 
image partner of a cube can be a chore. Here is a fast proce- 
dure for doing it. Suppose cube X is red on the top, orange on 
the bottom, yellow on the front, green on the back, blue on 
the left and white on the right. You want to find its mirror 
image. Turn the other 29 cubes so that they are all orange on 
the bottom. Just five of them will be red on the top. Keep 
those cubes and discard the others. Rotate the five so that 
they all have yellow faces toward you. Only one cube will be 
green on the back, and it is the mirror image of X. The pro- 
cedure works because the mirror-image cube is the only other 
cube that has the same pairing of colors on opposite faces. 

Similar elimination procedures are useful in working on 
color-cube problems. To speed up such procedures you can 
arrange a large number of cubes in a row; the entire row can 
be turned over by applying pressure on the ends. For ex- 
ample, suppose you want all cubes that have red and blue on 
opposite faces. Turn the 30 cubes red side up and arrange 
them in several rows. Rotate each row 180 degrees and you 
can quickly obtain the six cubes that have blue now on the 
top. 

The historic 30-cube puzzle is stated as follows: Select 
any cube at random and call it the prototype. The task is to 
find eight cubes among the remaining 29 that will build a two- 
by-two-by-two model of the prototype. The model must have 
solid-color faces (each face made up of four cube faces) that 
correspond to the arrangement of colors on the prototype. 
Furthermore, the model must meet what we shall call the 
domino condition. Every pair of touching faces in the interior 
of the model must be of like color, that is, a red face must 
abut a red face, a green must abut a green and so on. It turns 
out that for each prototype there is only one set of eight cubes 
that will fulfill these requirements, but the cubes will always 
build the model in two distinct ways. 

There is more on this problem and others involving the 
30 cubes in the last part of the chapter in New Mathematical 
Diversions cited above and in the references given in the bib- 
liography of that book. My reason for discussing the set again 
here is to introduce a truly remarkable arrangement of the 
set, the six-by-six matrix shown in Figure 38, and some un- 
published puzzles that make use of the cubes. 

This matrix is the discovery of John Horton Conway, now 
at Princeton University, who also suggested the labeling. The 
most surprising feature of the matrix is that it instantly pro- 
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vides all the solutions for the historic problem just described. 
Suppose cube Df is chosen as the prototype. To find the eight 
cubes that model it, first locate its mirror partner Fd. The 
eight cubes are the four that are in the same row and the four 
that are in the same column as Fd, excluding Fd itself. The 
situation is symmetrical. The eight cubes that model Fd are 
the four that are in the same row and the four that are in the 
same column as Df, excluding Df itself. This simple proce- 
dure applies to each of the 30 cubes. 

Other properties of Conway's matrix are only beginning 
to be explored; perhaps readers can find some new ones. I 
shall mention only one more property: The matrix also pro- 
vides instant solutions to a new and more difficult puzzle in- 
vented by Conway. The task of the puzzle is to find a set of 
five cubes with the curious property that if they are turned so 
that any given color is on the bottom of all five cubes, then 
the remaining five colors will show on the top. Thus if the 
cubes are turned so that all have red on the bottom, the other 
five colors will appear on the top; if the same five cubes are 
turned so that all have blue on the bottom, again the other 
five colors will appear on the top, and so on for any color cho- 
sen for the bottom. 

Each row and each column of Conway's matrix is a set of 
five cubes that solves this problem. Moreover, the only other 
sets of five cubes that yield solutions are those obtained by 
taking one of the 12 sets given by the rows and columns and 
replacing one or more cubes with a mirror-image cube. 

The five cubes in any row or column will also form a one- 
by-one-by-five prism with the following properties: (1) one side 
of the prism is all one color, and that color can be any one of 
the six colors; (2) each of the other three sides displays all 
five of the other colors; (3) each of the four pairs of touching 
faces meets the domino condition, and (4) the two ends of the 
prism are the same color. 

As Figure 38 demonstrates, the 30 cubes in Conway's 
matrix can be oriented so that they meet the domino condi- 
tion throughout. If we ignore the orientation of individual 
cubes, their arrangement in the matrix is unique in the fol- 
lowing sense. We do not differentiate among (1) different as- 
signments of colors to the numbers, (2) rotations or reflec- 
tions of the matrix or (3) transformations accomplished by 
exchanging any pair of columns and then exchanging the cor- 
responding pair of rows to restore the empty diagonal. For 



example, the matrix formed by switching columns b and f and 
then switching rows B and F is not considered to be different 
from the original matrix. (This transformation can be used to 
put any cube in any specified position.) 

An old puzzle involving four color cubes was a big seller 
in 1968 when Parker Brothers marketed it under the trade 
name Instant Insanity. It  is not germane to our topic because 
the cubes of the puzzle are not members of the set of 30. (Du- 
plicate colors appear on each cube.) Many problems more in- 
teresting than Instant Insanity can be created, however, by 
selecting subsets from the 30. MacMahon himself sold an eight- 
cube puzzle to the London company R. Journet, which mar- 
keted it around the turn of the century as the Mayblox puzzle. 
Its eight cubes were simply one of the 30 sets of eight that 
model a prototype and meet the domino condition. Pur- 
chasers were not told which prototype to model, however, and 
without this information the task is more difficult. 

If the domino condition is discarded and one simply tries 
to build a larger cube that models a prototype, much more 
difficult puzzles can be invented. One of the best is the work 
of Eric Cross of Ireland. In 1970 it was sold in the U.S. by 
Austin Enterprises of Akron, Ohio, under the trade name Eight 
Blocks to Madness. The eight cubes in this subset are the 
ones shown marked with an asterisk in Conway's matrix. Make 
a set (or select it from your set of 30) and see if you can build 
a model of one of the remaining cubes. Remember, you do not 
have to meet the domino condition. It is only necessary to 
model the outside colors of one of the 30 cubes. Only one 
such cube can be modeled, but it can be done in two ways. 

Here is another puzzle involving the same set of eight 
cubes: Form a larger cube with four distinct colors on each 
face and each of the six colors represented just four times on 
the outside of the cube. Once again the solution is not re- 
quired to fulfill the interior domino condition. 

One of the pleasures of playing with the 30 cubes is that 
one can invent new problems and confront the challenge of 
either finding solutions or proving impossibility. For example, 
is it possible to find a set of six cubes that form a one-by-one- 
by-six prism for which each of the four sides shows all six 
colors, all pairs of touching faces as well as the two ends match 
in color and all six colors are represented by the matching 
pairs? The answer is yes. Is it possible to divide the 30 cubes 
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into five distinct sets of six, each of which solves this prob- 
lem? I do not know. 

Take any eight-cube model that solves the classic prob- 
lem and join it to its mirror-image model with the like-color 
faces of the two models touching. The result is a two-by-two- 
by-four brick with a different color on each of its four larger 
faces and a fifth color on the other two faces. The brick will 
of course meet the domino condition throughout. It is easy to 
think of scores of similar problems for bricks of other mea- 
surements, but I know of no reported results. 

In 1956 Paul B. Johnson showed that when the domino 
proviso is dropped, there are 144,500 ways to build an eight- 
cube model of a prototype that is not one of the eight cubes. 
Of this number, 67,260 ways build with different sets of eight 
cubes. Johnson also proved that any set of eight cubes that 
models a prototype (not including the prototype) will do so in 
two, four, eight or 16 ways. Conway, working with a system 
of directed graphs, obtained the last result independently and 
also showed that no set of eight will build a prototype in just 
one way even if the prototype is among them. If a set builds 
a prototype at all, it will do so in at  least two ways. If a set of 
eight cubes can model a prototype (not including the proto- 
type) in 16 ways, Conway proved that two of the ways will 
satisfy the domino condition. 

Conway has obtained many other results on the 30 cubes 
that have not been published. Of particular interest is a quick 
method for finding in his matrix the prototype, if there is one, 
that can be modeled (without meeting the domino proviso) by 
any given set of eight cubes. Here are some research ques- 
tions, some of which Conway has solved, about such models: 

Is it possible to select three disjoint sets of eight cubes 
from the 30 that will build three models of the same proto- 
type? 

Is it possible to select three disjoint sets of eight cubes 
that will model three distinct cubes? 

What is the largest set of different cubes for which 
there is only one subset of eight cubes that will model a 
cube? 

Major MacMahon's set of 30 cubes, already a classic 
source of recreational mathematics, surely conceals a wealth 
of surprises yet to be discovered. 



Bottom TOP 

FIGURE 39 Solution to the "Eight Blocks to Madness" 

The problem was to use eight specified color cubes to build a 
larger cube with each face a solid color and no two faces the 
same color. The top and bottom layers of one solution are 
shown in Figure 39. The second solution is obtained by shift- 
ing the cubes in the top layer so that each cube moves coun- 
terclockwise to the adjacent position without changing its 
orientation. The prototype of the model is cube FG in the ma- 
trix of 30 color cubes. 

The second problem was to use the same eight cubes to 
build a larger cube that has four different colors on each face, 
with each color represented four times in all. Two solutions 
(I do not know if there are others) are easily obtained from 
the t.wo solutions to the previous problem. Simply "triple cut" 
each cube by exchanging the left and right slabs, the front 
and back slabs and the top and bottom slabs. The three cuts 
can be made in any order. 

Two solutions are not, of course, "different" if one can be 
obtained from the other by rotations, reflections or permuting 
the colors. 

I said I did not know whether the 30 cubes can be divided 
into five sets of six each, such that each set is a row showing 
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six different faces on each of its four sides, with end colors 
matching, and all touching faces matching. Zoltan Perjes, of 
the General Institute of Physics, Budapest, was the only reader 
who solved this problem. A solution is shown in Figure 40. 
Nontrivially different sets, he pointed out, also solve the 
problem. 

I regret not having space to discuss the long, fascinating 
letters from Michael G. Harman, Peter Cameron, D. P. Lau- 

FIGURE 40 Solution to a previously unsolved problem 



rie, G. J. Westerink, Zoltan Perjes, and others who sent ma- 
terial about the cubes, and called attention to how the cubes 
relate to significant problems in graph theory and combina- 
torial geometry. 

Harry Sonneborn I11 found it helpful to dispense with 
diagrams, and designate each cube by six digits, taking in or- 
der the left side, right side, top, bottom, far side, near side. 
Thus the cube at the lower left corner of Conway's matrix 
would be coded by 421653. A doublet at either end can be 
moved to the middle without altering the cube, but if a doub- 
let is put between the other two it changes the cube to its 
mirror image. Transposing the numbers of any doublet also 
changes the cube to its mirror reflection. 

Because there are 15 different ways (ignoring rotations) 
to designate a cube by three doublets, these 15 and their mir- 
ror forms prove there are just 30 different cubes. Sonneborn 
went on to show how many of the problems I posed could be 
solved simply by manipulating the digits. 

Das Spiele der 30 Bunten Wiirfel. Ferdinand Winter. Leipzig, 
1934. 

"Colored Polyhedra: A Permutation Problem." Clarence R. 
Perisho, in Mathematics Teacher, 53, 1960, pages 253- 
255. 

The  Cube Made Interesting. Aniela Ehrenfeucht. Pergamon, 
1964, pages 46-66. 

New Mathematical Diversions from Scientific American. Martin 
Gardner. Simon and Schuster, 1966, Chapter 16. 

"The 23 Colored Cubes." Norman T. Gridgeman, in Mathe- 
matics Magazine, 44, 197 1, pages 243-252. 

"Coloring the Faces of a Cube." E. H. Lockwood, in Mathe- 
matical Gazette, 61, 1977, pages 179-182. 

"A Notation for MacMahon's Coloured Cubes." Dirk P. Lau- 
rie, National Research Institute for Mathematical Sci- 
ences, Pretoria, South Africa, Technical Report, TWISK 
40, August, 1978. 

On 8-cube (2 x 2 x 2) Puzzles 

"Stacking Colored Cubes." Paul B. Johnson, in American 
Mathematical Monthly, 63, 1956, pages 115-124. 



"Colour Cube Problem." W. R. Rouse Ball, in Mathematical 
Recreations and Essays (revised), Macmillan, 1960, pages 
112-1 14. 

"The Mayblox Problem." Margaret A. Farrell, in Journal o f  
Recreational Mathematics, 2 ,  1969, pages 5 1-56. 

" 'Eight Blocks to Madness'-A Logical Solution." Steven J. 
Kahan, in Mathematics Magazine, 45, 1972, pages 57- 
65. 

"More Progress to Madness Via 'Eight Blocks.' " Andrew 
Sobczyk, in Mathematics Magazine, 47, 1974, pages 1 15- 
124. 
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Puzzles and Paradoxes. T. H .  O'Beirne. Oxford University 
Press, 1965, Chapter 7. 

"Crazy Cubes." Paul Wehl, in Popular Science, 193, 1968, pages 
132-133. 

"A Note on 'Instant Insanity.' " T. A. Brown, in Mathematics 
Magazine, 41, 1968, pages 167- 169. 

"Solving 'Instant Insanity.' " Robert E .  Levine, in Journal of 
Recreational Mathematics, 2, 1969, pages 189- 19 1. 

"An Improved Solution to 'Instant Insanity.' " B. L. Schwartz, 
in Mathematics Magazine, 43, 1970, pages 20-23. 

"A Diagrammatic Solution to 'Instant Insanity' Problem." 
A. P. Grecos, in Mathematics Magazine, 44, 197 1, pages 
119-124. 

"A Cure for 'Instant Insanity.' " Edward J. Wegman, in Pi  Mu 
Epsilon Journal, 5, 197 1, pages 22 1-223. 

" 'Instant Insanity,' that Ubiquitous Baffler." Dewey C. Dun- 
can in Mathematics Teacher, 65, 1972, pages 131-135. 

"A 2 x 2 x 1 Solution to 'Instant Insanity.' " Kay P. Litchfield, 
in Pi Mu Epsilon Journal, 5, 1972, pages 334-337. 

" 'Instant Insanity'-A Significant Puzzle for the Classroom." 
Joseph A. Troccolo, in Mathematics Teacher, 68, 1975, 
pages 3 15-3 19. 

"Generalized 'Instant Insanity' and Polynomial Complete- 
ness." Edward Robertson and Ian Munro, in Proceed- 
ings o f  the 1975 Conference on  Information Science and 
Systems, April 2-4, 1975. 

"NP-Completeness, Puzzles, and Games." Edward Robertson 
and Ian Munro, in Utilitas Math., 13, 1978, pages 99- 
116. The authors show in this and the previous paper 
that a generalized Instant Insanity problem is NP-com- 
plete. 



Egyptian Fractions 

ong before the Christian Era, Chinese mathematicians had a 
surprisingly sophisticated comprehension of fractions. They 
accepted any whole number as a numerator or denominator, 
and had excellent rules for adding, subtracting, multiplying 
and dividing fractions. As is common practice today, the 
Chinese preferred to work with proper fractions, or fractions 
that have the numerator smaller than the denominator, a fea- 
ture reflected in their calling the numerator tzu (son) and the 
denominator mu (mother). 

The ancient Egyptians, however, had a peculiarly hob- 
bled approach to fractions. They understood rational frac- 
tions with numerators greater than 1 well enough but appar- 
ently could not deal with them as single numbers. With the 
sole exception of 213, for which there was a special hiero- 



glyph, they had symbols only for unit fractions, that is, frac- 
tions that are the reciprocals of positive integers, with 1 above 
the line and any positive integer below. 

To manipulate fractions with numerators higher than 1 
the Egyptians expressed such fractions as sums of distinct 
unit fractions. For example, instead of writing 516 they wrote 
112 + 113. They devised rules for carrying out all the necessary 
arithmetical operations on expressions of this type. In certain 
cases, particularly those involving addition, there are advan- 
tages to working with fractions in the expanded form, but in 
general the Chinese methods for handling fractions are far su- 
perior. 

Most of what is known about Egyptian fractions is de- 
rived from the information given in a famous document, now 
known as the Rhind papyrus, which was inscribed in about 
1700 B.C. It was bought in Luxor in 1858 by A. Henry Rhind, 
a Scottish antiquary, and is now owned by the British Mu- 
seum. The papyrus, a kind of calculator's handbook, opens 
with a table in which every fraction of the form 2lb is ex- 
pressed as a sum of distinct unit fractions arranged in de- 
creasing order of size, where b is equal to all the odd integers 
from 5 through 10 1. 

Did the Egyptians have a systematic method for expand- 
ing proper fractions in this way? A number of scholars have 
speculated about the possibility but it seems most probably 
that they did not, because the expansions given in the Rhind 
papyrus are not always the "best." There are of course many 
different ways to define "best." The most obvious way is to 
call an expansion best if it minimizes the number of terms. 
Another type of best expansion is one that minimizes the larg- 
est denominator in the series. For example, the expansion of 
317 as 1/4+ 1 /7+ 1/28 has the smallest possible number of 
terms, but the expansion as 116 + 117 + 1/14 + 112 1 has the 
smallest possible value of the largest denominator. If both the 
number of terms and the largest denominator can be mini- 
mized in the same expression, so much the better. (I shall not 
consider other types of best expansions such as those that 
minimize the sum of all the denominators.) 

Even stranger than the preference of the Egyptians for 
such a cumbersome system is that the Greeks adopted it. In 
fact, the system was widely used in Europe until well into the 
17th century! Even the great Archimedes calculated with what 
are now called Egyptian fractions. The term has come to refer 
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to any expression of a rational number as a sum of distinct 
unit fractions, traditionally arranged in decreasing order of 
size. Modern fractions, in which any positive integer can be 
above or below the line, are derived from Hindu mathematics 
and were not widely adopted until the 18th century. Some 
have maintained that the long preoccupation with unit frac- 
tions was a cultural bias that delayed progress in mathemat- 
ics as much as the Roman system of writing numerals did. 

Investigating the properties of Egyptian fractions is now 
a small but challenging task in number theory. There are many 
deep unsolved problems in this area, but there are also many 
problems well within the reach of any clever novice that have 
much in common with certain recreational puzzles. For ex- 
ample, consider the old Arabian brainteaser about a man whose 
will specified that his 1 1  horses be divided so that his eldest 
son would get 112, his middle son would get 114 and his 
youngest son would get 116. When he died, his lawyers were 
puzzled about how to carry out these eccentric instructions. 
After all, horses are of little value when sliced into fractional 
parts. A relative, hearing of the problem, solved it by lending 
the heirs his own horse. The 12 animals were then easily di- 
vided according to the formula in the will, with the three sons 
respectively getting six, three and two. One horse was then 
left over, and so the relative got his horse back! 

The puzzle has appeared in many different forms, and of 
course it can be generalized to deal with larger numbers of 
sons and larger numbers of horses that are borrowed and then 
returned. If we stick to the story's traditional form involving 
three sons and one borrowed horse, an interesting question 
arises. How many variations are possible in the number of 
horses to be divided and the set of three fractions for dividing 
them specified in the father's will? One might guess that there 
would be an infinite number, but there are only seven. They 
are the seven solutions of the Diophantine equation nl(n + 1) = 11 
a + llb + llc, where a, b and c are positive, distinct integers, 
a is less than b, b is less than c and n+ 1 is the least common 
multiple of a, b and c. 

It is easy to show that a must be equal to 2. If a is greater 
than 2 ,  then the lowest possible least common multiple for a, 
b and c is 12, obtained when a equals 3, b equals 4 and c 
equals 6. Therefore nl(n+ 1) must be at  least 11112. But the 
sum 113 + 114 + 115 equals 47160, which is less than 1 111 2, and 
if the denominators are raised, the sum is even smaller. Hence 



a is not greater than 2, and so a equals 2. A similar argument 
shows that b must be either 3 or 4, and with that information 
it is not hard to determine all the possible values for c. The 
chart in Figure 41 gives the value of n (the original number of 
horses to be divided) and the denominators of the three unit 
fractions for each of the seven possible variations of the puzzle. 

It is obvious that any proper fraction can be expressed as 
the sum of unit fractions if a repetition of terms is allowed. 
For example, 317 equals 117 + 117 + 117. It is not obvious, how- 
ever, that every proper fraction can be expressed as the sum 
of unit fractions even if a repetition is forbidden. One proof of 
this fact is the existence of a famous algorithm for writing any 
proper fraction as the sum of a finite number of distinct Egyp- 
tian fractions. The algorithm was first published in 1202 by 
Leonardo of Pisa, better known as Fibonacci, in his influen- 
tial book on arithmetic Liber abaci. Fibonacci preferred to work 
with unit fractions, and his book contains tables for convert- 
ing proper fractions to Egyptian sums. His algorithm for 
converting a proper fraction to the sum of a finite number of 
distinct Egyptian fractions is given without any proof 
that it always works. The eminent British mathematician 
J. J. Sylvester rediscovered the algorithm, and in 1880 he 
published the first proof that it does always work. 

Egyptian Fractions 

FIGURE 41 All the variations of an old Arabian puzzle 
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Fibonacci’s method is simple. Call the proper fraction a/b. The
first term of the expansion is the largest unit fraction not greater
than a/b. Now subtract the unit fraction from a/b to obtain anoth-
er proper fraction. The second term of the expansion is the largest
unit fraction not greater than this remainder. Continue in this
manner, each time putting down the largest usable unit fraction as
the next term in the expansion and then subtracting and repeat-
ing the process with the remainder. It is clear that the fractions
obtained in this way will grow steadily smaller. It can be proved
that the process always terminates. Hence the algorithm always
works. (It is also possible to express any irrational number as the
sum of an infinite series of distinct unit fractions, but that is too
far removed from our topic.) In today’s vernacular, Fibonacci’s
method is known as a greedy algorithm, because at each step in
the process the largest fraction possible is chosen.

Although the greedy algorithm will express any proper fraction
in the Egyptian manner, it does not always give the best expansion
in either of our two senses of the word.

Any proper fraction can be expressed in the Egyptian manner
in infinitely many ways. Consider the expansion 2/3 = 1/2 + 1/6.
By applying the formula to the last term 1/6 we obtain a new
expansion: 2/3 = 1/2 + 1/7 + 1/42. If we repeat the procedure with
1/42, we obtain 2/3 = 1/2 +1/7 +1/43 + 1/1,806. In this way the
expansion of 2/3 as a series of unit fractions can be continued
indefinitely.

The same formula underlies an algorithm called the splitting
method, which, like Fibonacci’s greedy algorithm, is guaranteed
to generate a finite Egyptian series for any proper fraction. There
are many other algorithms that serve the same purpose, each with
its own advantages and defects. Some algorithms minimize the
number of terms and others minimize the largest denominator,
but all of them, including the greedy algorithm, are inefficient
and difficult to apply to fractions with large denominators and
numerators.

104 CHAPTER SEVEN
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When the greedy algorithm is applied to a proper fraction 
alb, it always generates a series of Egyptian fractions with a 
number of terms no greater than a. Thus when it is applied to 
a proper fraction of the form 2/b, it generates an expression 
with one or two terms: 214 equals 112; 215 equals 113 + 111 5 ;  
216 equals 113; 217 equals 114 + 1/28,  and so on. At each step 
the algorithm chooses the largest unit fraction that is smaller 
than the remainder, but since each step is unaffected by pre- 
ceding or succeeding steps, the procedure can easily miss an 
expression with fewer terms when it is applied to a proper 
fraction with a numerator of 3 or higher. It also tends to gen- 
erate terms with denominators much larger than necessary. 

Michael N. Bleicher, in his section on Egyptian fractions 
in the book Excursions into Mathematics gives several horren- 
dous examples of how miserably the greedy algorithm can fail 
to generate the best expansion in either of our two senses of 
the word. For example, when the algorithm is applied to 
511 2 1, it generates the series 

Bleicher compares that with the expansion 51121 = 1125 + 11 
7 5 9 +  11208,725. There is no way to express 51121 with fewer 
than three terms, but Bleicher does not know whether or not 
a three-term expansion can have a largest denominator smaller 
than 208,725.  

For proper fractions of the form 3lb the greedy algorithm 
is guaranteed to generate an expression of three or fewer terms, 
and if the fraction has the form 4/b, it is guaranteed to gen- 
erate an expression of four or fewer terms. The outstanding 
unsolved question of Egyptian fractions concerns the case 
41b: Can a proper fraction 41b always be expressed with three 
or fewer terms? In other words, can the Diophantine equation 
41n = l la + l lb  + llc always be solved in positive integers for any 
integral value of n greater than 4? 

Paul Erdos and E. G. Straus have conjectured that the 
equation can always be solved. Their conjecture has been 
verified to extremely large values of n, but it has not been 
proved. Similarly, Waclaw Sierpinski has conjectured that all 
proper fractions of the form 5 /b  can be similarly expressed 
with no more than three terms. He has also conjectured that 
for any given integer k and a variable with integral values b 
there is a value of b greater than k such that for all larger 



values of b the proper fraction Wb can always be expressed 
with no more than three terms. 

So far we have considered only proper fractions. What 
about improper fractions such as 211 and 7/3? These fractions 
too can always be expressed by a finite Egyptian series in 
infinitely many ways. To generate such an expression we start 
with terms in the harmonic series 111 + 112 + 113 + 114 + . . . , 
because they are the largest unit fractions we can use. It is 
well known that the harmonic series does not converge. In 
other words, a partial sum (the sum of the first n terms for 
some 12)  will exceed any integer we name. The procedure for 
generating a series of Egyptian fractions equal to an improper 
fraction consists in using the harmonic series as far as pos- 
sible and then adding more unit fractions to express whatever 
fractional part of the desired total remains. The harmonic se- 
ries diverges with distressing and increasing slowness, how- 
ever, and for this reason even small improper fractions de- 
mand enormously long Egyptian expressions. For example, 
expanding 1011 requires more than 20,000 unit fractions from 
the harmonic series. 

Recently some curious results concerning Egyptian frac- 
tions have been obtained. In 1964 Ronald L. Graham of Bell 
Laboratories studied the question of what rational fractions 
can be expressed by Egyptian fractions in which all the de- 
nominators are squares. He solved the problem completely, 
and he also solved the more general problem of determining 
which rational fractions can be expressed with Egyptian frac- 
tions in which all the denominators are powers higher than 2. 
In the same year Graham also showed that if there is a set of 
numbers that includes all prime numbers greater than some 
number and all squares greater than some (possibly different) 
number, then any rational fraction has an Egyptian expansion 
that draws all its denominators from the set. 

Particularly difficult problems arise when the denomina- 
tors of Egyptian fractions are limited to the odd whole num- 
bers. It is easy to see that the sum of a series of such fractions 
cannot be a fraction with an even denominator. It has been 
shown that every rational fraction with an odd denominator 
can be expressed as the sum of a finite series of distinct 
Egyptian fractions, all with odd denominators, for example 
213 = 113 + 115 + 119 + 1/45; 215 = 113 + 1/15, and 217 = 117 + 119 + 
1/35 + 11315. There are inefficient algorithms for finding such 



expressions, but no one has yet proved that Fibonacci’s greedy
algorithm always terminates when it is applied to this task, even
for proper fractions. When denominators may be either even or
odd, the greedy algorithm generates increasingly small numera-
tors so the series must terminate. If, however, all denominators
are odd, it is not known if the greedy algorithm always termi-
nates.

The expansion of 1 into the smallest number of Egyptian prop-
er fractions with all odd denominators was not found until 1971.
(The expression 1/1 is not allowed.) It turns out that there are five
solutions to this problem, each with nine terms. The expansion
with the smallest largest denominator is 1 = 1/3 +1/5 +1/7 +1/9
+1/11 + 1/15 + 1/35 +1/45 +1/231. All five solutions start with
the reciprocals of 3, 5, 7, 9, 11 and 15. The other four solutions
continue with the reciprocals of 21, 135 and 10,395; 21, 165 and
693; 21, 231 and 315, and 33, 45 and 385. What Egyptian expan-
sion for 1 with all odd denominators has the smallest largest
denominator? The only answer is the 11-term series 1 = 1/3 +1/5
+1/7 +1/9 +1/11 +1/33 +1/35 +1/45 +1/55 +1/77 +1/105.

By adding 1/1 to each of the series given above we get the best
odd-denominator Egyptian expressions for 2. When 1/1 is not
allowed, however, I do not know what the best expressions for 2
are (in either sense of the term) or even whether such expressions
have been found.

Here are four easy Egyptian fraction problems.

1. Express 1 as the sum of three distinct unit fractions.

2. Express 67/120 as the sum of the fewest possible Egyptian frac-
tions, with the smallest largest denominator for that number of
terms.

3. The fraction 8/11 is the “smallest” proper fraction that cannot
be expressed with fewer than four Egyptian fractions, in the sense
that the sum of its numerator and denominator is minimized.
Find a four-term expression for the fraction.

4. When the greedy algorithm is applied to a proper fraction
of the form 3/b, what is the smallest value for b such that the
algorithm produces an expansion of three terms and that 3/b
can be expressed as the sum of two distinct unit fractions?
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1. The only solution is the expansion 1 = 112 + 113 + 116. 

2. The expansion is 67/120= 113 + 1/8+ 1/10. 

3. The expansion is 811 1 = 112 + 116 + 1/22 + 1/66. 

4. The smallest value for b is 25. The greedy algorithm gives 
the expansion 3/25 = 119 + 111 13 + 1125,425, but there is also 
the expansion 3/25 = 1/10 + 1/50. 

I reported a question by Michael Bleicher: Can 51121 be 
expanded to three unit fractions with a smaller largest de- 
nominator than 208,725? The answer is yes. Readers too nu- 
merous to mention found the "best" solution: 5/12 1 = 1/33 + 11 
121 + 11363. 

I arn indebted to William Gosper for providing the Egyp- 
tian fraction series for 511 2 1 that is generated by the greedy 
algorithm. It corrects the third and fifth terms as they appear 
in Bleicher's contribution to Excursions i n  Mathematics. 

I said I did not know of the minimum expansion for 2 in odd 
Egyptian fractions. William Friedmann sent me one with 86 
terms, and 6,195 as the largest denominator, and an 89-term 
expres~~ion with 1,765 as the largest denominator. He did not 
know if' either of these are "best." 
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"Its chief merit is its Simplicity-a Simplicity so pure, so profound, in a 
word, so simple, that no other word will fitly describe it." 

-LEWIS CARROLL, The New Belfry of Christ Church, Oxford 

odern ;art, particularly in the U.S., is in such a disheveled 
state that almost any kind of art-good or bad, traditional or 
avantgarde, serious or put-on-gets displayed, praised, con- 
demned and even bought. In painting, for reasons over which 
critics wrangle, there is a strong movement toward realism, 
but in sculpture most of the movement seems to be in the 
opposite direction. Not that realism has not invaded the three- 
dimensional art world as well! Some 15 years ago George Se- 
gal started making his plaster-cast models of human figures, 
at first painted all white and later in bright colors. Now Duane 
E. Harison has carried realistic sculpture to its ultimate by 
creating life-size waxworks of men and women that are the 
3-space analogues of color photographs. The main trend, 
however, at  least with respect to the outdoor sculpture found 



in parks and in front of buildings, has been in the abstract 
direction of minimal art. 

Minimal sculpture is sculpture reduced to extremely sim- 
ple, nonobjective forms. Junkyard art may be minimal in terms 
of cost of materials, but its form is usually quite complex. A 
piece of driftwood art may be minimal in terms of the artist's 
efforts, but it also is much too complicated to be called mini- 
mal. True minimal art-the geometric shapes one now sees in 
public places-suggests, as art critic Hilton Kramer wrote in 
The New York Times, "the atmosphere of the assemblly line, 
the engineering laboratory, the drafting table and the plastics 
factory." To Kramer's list I should like to add: illustrations in 
books on mathematics, in particular books on recreation(a1 solid 
geometry. In this chapter we take a look at some areas where 
minimal sculpture and geometrical play overlap. 

Let us begin with the minimal technique that consists in 
cutting metal sheets, folding them and perhaps painting them. 
Picasso's rust-colored 50-foot work that stands in the plaza of 
Chicago's Civic Center is a striking example of the genre. It 
was first modeled as a folded cardboard cutout, but it is not 
really minimal because it has two pupils (although only one 
eye) and what seem to be two nostril holes (see Figure 42). 
Picasso's Bust of Sylvie, standing 30 feet high on Bleecker 
Street in New York, is more obviously a woman's face, al- 
though it too was modeled as  a cutout. Completely no~~objec- 
tive realizations of the technique in many colors and varieties 
have been created by minimalists all over the world. 

Figure 43 shows a proposal for a public monument of the 
same type. Study it carefully. Is it possible to construct a model 
of this form by taking an ordinary file card, snipping it with 
scissors and folding it, or is it necessary to glue it along cer- 
tain edges? I do not know the origin of this marveloils new 
test of one's ability to think in 3-space. I first heard of it from 
Kim Iles, who teaches forestry at  the University of British 
Columbia. He in turn heard it from a visiting Russian profes- 
sor of forestry, who had seen it in an entrance examination 
for the school of architecture at  the University of Leningrad. 

The form has come to be called a hypercard. Magicians 
have learned of it and have made it the basis for a number of 
magic tricks. The hypercard is also the basis for an amusing 
party game. Place a large model of the card in the center of 
the floor. The players may view it from any angle but are not 
allowed to touch it. Each player is given one file card and a 



FIGURE 42 Chicago's Picasso. W. B. FinchIArt Resource, N.Y. 
Copyright 6 1991 ARS N.Y./SPADEM. 

pair of scissors, and a prize goes to the first player who comes 
up with a replica of the model. I t  is surprising how many peo- 
ple decide the task is impossible. 



Minimal  sculpture^ 

FIGURE 43 Design for a minimum-sculpture monument 

Another popular minimal-sculpture technique consists in 
simply building a large model of a polyhedron. Of recent works 
of this type one of the best-known is Cigarette, a huge, twisted 
black polyhedral prism designed by minimalist Tony Smith of 
South Orange, N.J. There is a cartoon by David Levine (New 
York Review of Books, September 26, 1968) that shows the 
Mary of Michelangelo's Pieta holding on her lap the lirnp form 
of a polyhedron that looks suspiciously like Smith's Cigarette. 

Some minimalists like to reproduce an ordinary cube, al- 
though their models are usually colored with a spray gun and 
tipped at an angle so no one will suppose they are merely the 
pedestal of a work still to come. The best known exa.mple is 
Isamu Noguchi's red cube with a hole going through it, and 
balanced on one corner at  140 Broadway, in Manhatitan (see 
Figure 44). 

Born in Los Angeles in 1904, of a Japanese fatiher and 
Irish-American mother, Noguchi is one of the most famous of 



FIGURE 44 Noguchi's "Red cube," his most famous work, at  140 
Broadway, in Manhattan. Courtesy of the Isamu Noguchi Founda- 
tion. Inc. 

minimalist sculptors. A photograph of Noguchi's cube pro- 
vides the frontispiece of Geometry, a textbook by Christian 
Hirsch and four others (Scott, Foresman, 1978), and the book's 
red covers, both front and back, are photographs taken through 
the cube's hole. 

Sticking cubes together in various ways is another favor- 
ite ploy of minimalists. When the cubes are joined at their 
face, the result is known to mathematicians as  a polycube. I 
have often thought Piet Hein's Soma cube, which consists of 



six tetracubes and one tricube, would make an entertaining 
piece of outdoor minimal sculpture. Each month its overall 
structure could be altered, although the pieces would have to 
be locked together in some way to prevent theft or vandalism. 
(For a discussion of the Soma cube and other polycube re- 
creations, see Chapter 3 of my Knotted Doughnuts ana! Other 
Mathematical Entertainments, W. H .  Freeman, 1986). 

A polycube consisting of eight cubes arranged in a l-by- 
2-by-4 rectangular parallelepiped is known as the canonical 
brick. As far as I know the first sculptor to use canonical bricks 
in a work of art was the New York minimalist Carl An~dre. In 
1976 the Tate Gallery in London displayed a work by Andre 
that consisted of 120 ordinary bricks (not quite canonical, but 
close to it) packed into a rectangular parallelepiped two bricks 
high, six wide and ten long. The bricks had been shipped to 
the Tate by Andre with "directions" for their assembly. Most 
viewers considered the work nothing more than a "pile of 
bricks," and London newspapers had a field day when it was 
disclosed that the Tate had paid Andre $12,000 for it. John 
Russell of The New York Times defended the work for its "or- 
der, resolution and . . . absolute simplicity," for its "clarity 
of intention" and for the "frank and unambiguous way in which 
the materials are assembled." An Andre, said Russell, "just 
lies there and minds it own business." 

To mathematicians, however, Andre's pile of bricks minds 
decidedly dull business. They can think of all kinds olf ways 
of packing polycubes that are just as pleasing aesthetically 
and have the added merit of being interesting. For example, 
consider the three-dimensional form of the flat Y pentomino. 
The rectangle of smallest area (5 by 10) that can be packed 
with Y pentominoes is shown at the left in Figure 45. If the 
pentomino is given a unit thickness, so that it becomes a solid 
of five joined cubes, it is called the Y pentacube. What rec- 
tangular boxes can be fully packed (without holes) using Y 
pentacubes? 

To be fully packable a box must of course have a volume 
in unit cubes that is a multiple of 5. No fully packable box of 
volume 5 p  exists, where the number of Y pentacubes p is a 
prime. In 1970 C. J. Bouwkamp and David A. Klariner re- 
ported on the results of a computer program that found all the 
boxes that can be fully packed with 25 or fewer Y penta- 
cubes. The smallest is the 1-by-5-by-10 box. One of its four 
possible packings is shown at the left in Figure 45. There are 



FIGURE 45 Y pentominoes (left) and Y pentacubes (right) 

three other boxes with the same volume, but none is pack- 
able. 

The smallest cubical box, and the only box of volume 125, 
that can be fully packed with Y's is the 5-by-5-by-5 cube. If 
the reader will take the trouble to make 25 Y pentacubes, he 
will find assembling them into a cube is a splendid puzzle. 
The solution partly given at the right in Figure 45 is one Klar- 
ner found by hand before the computer program printed 
hundreds of other solutions. If Andre's Tate Gallery work had 
been a cube composed of 25 Y pentacubes instead of a rec- 
tangular parallelepiped of 120 octacubes, it would have re- 
quired a more detailed set of assembly instructions, but at 
least it would have intrigued mathematicians. 

Lewis Carroll is among those who have felt that an ordi- 
nary cube is too minimal to have much aesthetic value, and 
no one has been funnier in the written criticism of such art. 
In 187.2 a new belfry was designed to house the bells that had 
been rlemoved from the cathedral of Christ Church, Oxford, 
where Charles L. Dodgson taught mathematics. The belfry, 
placed over an elegant staircase leading to the hall at a cor- 
ner of the Great Quadrangle, was nothing more than a simple 
wood cube. The design so annoyed Dodgson that he privately 
published a monograph on the subject titled The New Belfry 
of Christ Church, Oxford. The title is followed by a line from 
Keats: "A thing of beauty is a joy forever." Below the quota- 
tion Dodgson drew a picture of a square and captioned it: 
"East view of the new Belfry, Ch. Ch., as seen from the 
Meadow (see Figure 461." 

Dc~dgson opens his monograph with a note of etymology. 
The word "belfry," he writes, is from the French, bel, meaning 



Minimal Sculpture 1 1 1  7 

THE NEW BELFRY 
OF 

CHRIST CHURCH, OXFORD. 
A MONOGK'APH 

1iY 

I). C. I,. 

' < A  thing of Ijeauty is a joy for ever." 

East view oi Llie nt\v Flrlf,?, Cli. Ch . as 5ctn irom the l I t n r l n \ v  

SECOND THOUSAND. 

-- 

Oxforb : 

JAMES PARKER ANI)  CO. 

1872. 

FIGURE 46 Cover of a Lewis Carroll monograph 

"beautiful, becoming, meet," and the German frei, meaning 
"free, unfettered, secure, safe." Therefore it is equivalent to 
"meatsafe," an object to which the belfry bears a perfect re- 
semblance. Dodgson also speculates on why the design was 
chosen: Some say a chemistry student suggested it as a model 
of a crystal, but others affirm that a lecturer in mathematics 
found the design in the eleventh book of Euclid. The true story, 
says Dodgson, is that the belfry was designed by a wandering 



architect, now in a mental institution, who took his inspira- 
tion frtom a tea chest. 

To get the best view of the belfry Dodgson recommends 
looking at it from one corner, so that one can see the edges of 
the cube converge in perspective on a vanishing point. This 
view gives rise to his happy thought: "Would that it were on 
the point of vanishing." Next, one should make a slow circuit 
around the quadrangle, "drinking in new visions of beauty at 
every step," and then walk slowly away until one experiences 
"the delicious sensation of relief" when the belfry is no longer 
visible. 

The belfry's stunning design, Dodgson continues, has al- 
ready inspired manufacturers. Two builders of bathing ma- 
chines at  Ramsgate are making their machines cubical, and 
there ILS now a bar of soap "cut in the same striking and sym- 
metrical form." He has been told that Borwick's Baking Pow- 
der and Thorley's Food for Cattle are sold in no other shape, 
and he proposes that at the next Gaudy Night banquet each 
guest ?be given a "portable model of the new Belfry, tastefully 
executed in cheese." There is much more, including syllo- 
gisms, a dramatic skit and parodies of passages from famous 
poems. The complete monograph, along with Dodgson's 
drawing of the belfry, is reprinted in the Dover paperback 
Diversions and Digressions of Lewis Carroll. An introduction 
explains some of the monograph's inside jokes and topical al- 
lusions. 

A remarkable polyhedron that would make a work of min- 
imal sculpture far more interesting than a cube was discov- 
ered iin 1977 by Lajos Szilassi, a Hungarian mathematician. 
It is a seven-faced toroidal polyhedron, that is, all its faces 
are polygons and it is topologically equivalent to a doughnut. 
It shares with the tetrahedron the extraordinary property that 
every pair of faces have an edge in common. Until Szilassi's 
computer program found the structure it was not known that 
it could exist. 

In chapter 11 of my Time Travel and Other Mathematical 
Bewilclerments (W. H. Freeman, 1988), I describe a 14-faced 
polyhedron that was discovered in the late 1940's by another 
Hungarian, ~ k o s  Csaszar. The Csaszar and Szilassi polyhed- 
rons are closely related. The Csaszar polyhedron is also a to- 
roid, and it shares with the tetrahedron the property of having 
no diagonals. The Szilassi polyhedron is the topological dual 
of the Csaszar polyhedron: the two have the same number of 



FIGURE 47 The Szilassi toroidal polyhedron 

edges (2 I ) ,  but in the Szilassi polyhedron the 14 faces of the 
Csaszar polyhedron have been replaced by 14 vertex~es and 
the seven vertexes of the Csaszar polyhedron have been re- 
placed by seven faces. Figure 47 shows what the Szilassi po- 
lyhedron looks like. Note that the hole is unusually large and 
that there are three pairs of congruent faces. For readers who 
wish to make a model of the Szilassi polyhedron, E.  N. Gil- 
bert of Bell Laboratories has provided the patterns for all1 seven 
faces shown in Figure 48. Each pair of congruent faces can 
be cut as a single piece and folded along their common edge. 

The most delightful aspect of the Szilassi polyheciron is 
that it shows how a seven-color map can be drawn on a torus, 
that is, a map that must be colored with seven colors so that 
no two adjacent regions are the same color. On the plane or 
on a solid topologically equivalent to a sphere the largest 
number of regions that can be mutually adjacent is four, a fact 
displayed by the four faces of a tetrahedron. On the torus the 
corresponding chromatic number is seven. Color each iface of 
the Szilassi toroid a different color and then imagine the to- 
roid inflated to the shape of a doughnut. The surface will be 
covered with a seven-region map requiring seven colors. 



FIGURE 48 Patterns for the faces of the Szilassi polyhedron 

Minimal sculpture is not, of course, limited to polyhed- 
rons. Constantin Brancusi's Bird in Space is a well-known early 
example of free-form minimal sculpture. Many other sculptors 
have created simple structures with curved lines that have 
mathematically interesting properties. Eero Saarinen's mam- 
moth Gateway Arch, which dominates the skyline of St. Louis, 
comes at once to mind. It has the form of an inverted cate- 
nary, the curve assumed by a chain when it is held at  the 
ends and allowed to hang in a loop. 

For the past forty years few artists have been more influ- 
enced by mathematical concepts than the Swiss artist Max 
Bill, as is shown by his hard-edge painting and minimal 
sculpture. Bill's fascination with topology is reflected in doz- 



ens of works featuring curved surfaces that, like the Mobius 
strip, are one-sided. Many of his constructions are strange 
but oddly pleasing dissections of a simple solid, such as a 
torus, a sphere or a cube, into two congruent parts. For ex- 
ample, in the work shown in Figure 49 Bill cut a black diorite 
torus in half, then balanced one part on the other. 

FIGURE 49 Drawing of Max Bill's Construction from a Circular 
Ring 



Bill also executed a series of five works, each of which is 
based on a different way of cutting a sphere into two identical 
parts. Bill may not have been aware of it, but one of the works, 
the gray granite Half Sphere around Two Axes, is based on an 
old folk method of quickly slicing an apple into congruent 
halves. A half sphere cut by this method is shown in Figure 
50. It is not as  easy to make as it looks. Make a vertical cut 
halfway through the center of the top of a sphere. Turn the 
sphere over and make a second halfway cut, perpendicular to 
the first, through the center of the bottom of the sphere. Now 
make two horizontal cuts through diagonally opposite quarter 
sectors of the sphere's equatorial disk. The half sphere shown 
in the illustration is one of the two identical halves that re- 

FIGURE 50  Half of a sphere 



FIGURE 5 1  Minimal sculpture by M~tsumasa Anno 

sult. Note how it suggests a three-dimensional version of the 
yin-yang bisection of a circle into asymmetric, congruent parts. 

I close with a truly wondrous example of minimal sculp- 
ture designed by Mitsumasa Anno, a Japanese graphic artist. 
Figure 5 1 shows a work from his book, Anno 1968-1 977. A 
huge marble version of this mysteriously truncated cube would 
make an appropriate monument for the sunny grounds of Cal- 
ifornia's Stanford Research Institute. It would symbolize the 
management's faith in the military applications of their con- 
tinuing research on the paranormal. 



FIGURE 52 How to fold the hypercard 

The "hypercard" is easily constructed as follows: Take a rec- 
tangular sheet of paper or cardboard and make three cuts along 
the black lines shown in Figure 52. Now fold flap X up 90 
degrees along the broken line ABC and then turn the lower 
portion Y over by folding it back 180 degrees along the bro- 
ken line BC. 

The hypercard made a big hit with readers. For several weeks 
after the previous chapter appeared in Scientific American in 
1978, you could see hypercards all over Manhattan, espe- 
cially on art and advertising office desks. 



Magicians who like mathematical curiosities had a field 
day with this seemingly impossible object. It occurred to those 
who enjoy practical jokes to make the hypercard from what 
are called double-face or double-back cards. Nonmagicians, 
unaware that cards are printed with backs on both sides, or 
faces on both sides, were twice as puzzled by such a hyper- 
card, and of course unable to make one from an ordinary card. 

A similar idea, which I first heard about from Ton1 Ran- 
som, a Toronto amateur magician, was to carefully rule part 
of one side of a blank 3  x 5  file card with the familiar blue 
lines and one red line. Doing the same thing on part of the 
card's back enables you to produce a hypercard that is blank 
on its underside, with ruled lines on the top side and on one 
side of the mystery flap. It can be exhibited to guests, show- 
ing the blank underside before you tape it to the floo'r or a 
table. 

Canadian magic buffs Howard Lyons, Me1 Stover and 
Warren Stephens worked out the following way to present the 
hypercard as  a magic trick. They had cards printed froint and 
back as  shown in Figure 5 3 .  The dotted line is not printed, 
but indicates how the card is pre-cut before doing the trick. 
When you display the card, your thumb conceals this cut. Us- 
ing scissors, cut along the two black lines that have arrows 
pointing toward them, taking care not to reveal the cut under 
your thumb. Bend the flap back and forth, and show both sides 
of the card, while you patter about a man who wanted to cut 
a rectangle of plywood to produce a flap. After cutting the 
flap, he decided it left too large a hole. While you keep bend- 
ing the flap back and forth, secretly give the card a tvvist to 
form the hypercard. 

Put the hypercard on the table, with the flap folded flat 
and held down by your thumb to conceal one of the gaps. "Being 
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FIGURE 53 Front (left) and back of printed cards used in a hyper- 
card magic trick 
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a magician," you continue, "the man had no difficulty reduc- 
ing the size of the hole by half, as you see. In case you are 
wondering what happened to the other half of the hole, it's 
over here." Raise the flap to disclose the other gap. "What I 
can't understand is how such a flap could be cut from the two 
gaps and still stay in one piece!" 

Allow the audience plenty of time to puzzle over the hy- 
percard before you say "Beats me!" and tear up the card. 

Karl Fulves suggested a similar presentation with a pre- 
cut double-face or double-back card. As in the above trick, 
you keep the cut concealed under your thumb while you make 
the two cuts on the other side. The card is then secretly twisted 
(you can do this behind your back if you like) to produce the 
hypercard. Staple it to an ordinary playing card and hand it 
out for your victims to mull over. 

Fulves also suggested the following variant of the Cana- 
dian trick. There are no arrows on the card. The cut made in 
advance is concealed by your thumb while you make the other 
two cuts. Fold the flap over the pre-cut to conceal it, and have 
someone initial the upper left corner as shown in Figure 54. 
You initial the other corner. Unknown to your viewers, you 
have previously initialed the opposite side of this corner. Move 
the flap back and forth, then secretly twist to make the hy- 
percard. Both initials seem to be where they were before. Al- 
low everyone time to study the impossible structure before 
you tear it up or staple it to an uncut card. 

The hypercard has been used several times as a novelty 
give-away. Its first such use, as far as I know, was by the 
Office of Continuing Education, Ferris State College, Big 
Rapids, Michigan. Paul Merva, of that office, sent me a printed 
brochure of four pages formed by folding a sheet in half. The 

FIGURE 54 How hypercard, before twisting, is initialed in Karl 
Fulves's magic trick 
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brochure’s second leaf was a hypercard. After the three cuts and
twist had been made, the lower part of the card was so carefully
glued back to the first leaf as to be indistinguishable from a fold.
Of course the leaf had been printed so that the text read normal-
ly on both sides, with the flap’s text providing the copy missing
from the two sides.

Stover proposed using hypercards as placecards, each
mounted with glue on transparent plastic. A message can be
printed on the bottom of each card, to be read through the plas-
tic, and the person’s name written on the mystery flap.

Paul Merva and Alexis Gilliand each sent a model of the
paper ring shown in Figure 55. It is actually a Möbius surface,
and in the form depicted it seems even more mysterious than
a hypercard. Equally perplexing is a band with two mystery
flaps. They can be put in an untwisted band without having
to cut it—simply make the three cuts on opposite sides of the
band and give it two half-twists. A curious conversation piece
can be made in this way from a seamless band obtained by
cutting around a cereal box. The two flaps, projecting out-
ward from opposite sides, make it look like a truly impossible
object. The same can be done with a cardboard napkin ring, or
any ring cut from a paper or cardboard cylinder. Of course any

FIGURE 55 Mystery flap on a Möbius band



128 CHAPTER EIGHT

even number of flaps n can be created in such a band by giving it
n/2 half-twists, or any odd number of flaps by opening the band and
giving it n half-twists before rejoining the ends. Gilliand also sent
models of Klein bottles, with mystery flaps, that he constructed with
paper.

Jack Botermans, in his book Paper Capers, explains how to con-
struct three unusual variants of the hypercard, all with interior holes
(see Figure 56). The places where cuts are made, and the paper
rejoined, can be concealed in several ways: by carefully gluing and
rubbing the glued line, by drawing decorative patterns on the cards,
or by pasting something over the lines. Tricks Company, Ltd., a
Tokyo magic supply firm, sells the hyperdisk shown in Figure 56. It was
designed by Yasukazu Niishiro. Several five-pointed silver stars are
pasted on the disk to conceal the two glued lines.  Two of the stars con-

FIGURE 56 Three variations of the hypercard, all with interior holes
(shown shaded).  The cuts are shown dotted.



ceal the rejoined cuts as shown in the illustration. A trans- 
parent plastic cover, shaped like a pyramid, prevents orie from 
examining the impossible structure. 

The most elaborate presentation of magic tricks balsed on 
the hypercard is covered in Ben Harris's booklet, The Hyper- 
card Experience (see the bibliography). 

The method I described for bisecting an apple proved to 
be more interesting than I suspected. In France, it turns out, 
this curious way to slice an apple has long been a parlor stunt 
known as la coupe du roi (the cut of the king). Although each 
half of the apple is mirror asymmetric, the two halves are not 
mirror images of one another as one might suspect, but iden- 
tical, like the congruent yin and yang of the Oriental symbol. 
Indeed, it is not possible to cut an apple (or a sphere, right 
circular cone, or right circular cylinder) into two asymmetric 
halves that are mirror images. 

I found this out from a fascinating paper by four chemists 
at  Princeton University entitled, "La Coupe du Roi and Its 
Relevance to Stereochemistry: Combination of Two Homo- 
chiral Molecules to Give an Achiral Product," by Frank Anet, 
Steve Miura, Jay Siegel, and Kurt Mislow. There had been no 
known example of a molecule formed by joining an asym- 
metric molecule to another molecule of the same sort, to pro- 
duce a symmetric molecule analogous to the apple before it 
is cut. The four chemists succeeded in synthesizing just such 
a molecule. 

I mentioned only Max Bill as a sculptor who rellies on 
mathematical structures. Many other talented sculptors are 
producing mathematically based objects. Charles 0 .  Perry, of 
Norwalk, Connecticut, is a sculptor whose work ha:? been 
strongly influenced by topology. In England, Ronald Brown 
has been similarly influenced, especially by the topollogy of 
knots. Helaman Rolfe Pratt Ferguson, a professional ]mathe- 
matician at Brigham Young University since 197 1, is rapidly 
gaining recognition as  a serious sculptor. 

Ferguson's work is of more technical interest to itopolo- 
gists than the works of any other sculptor known to me. His 
forms include a variety of toruses, Mobius surfaces, Klein 
bottles, cross-caps, knots and wild spheres such as the Alex- 
ander horned sphere, which he has modeled in several differ- 
ent ways (see Figure 57). His "Torus with Cross-Cap and 
Vector Field," a white marble work now at the headquarters 
of the American Mathematical Society, in Providence, Rhode 



FIGURE 57 Whaledream II, Alexander's horned sphere, carved out 
of white carrara marble. Courtesy of Helaman Ferguson. 

Island, is surely the first sculpture ever to show a cross-cap. 
Other Ferguson works are on university campuses, or owned 
by corporations and private collectors. See the bibliography 
for references on all three artists. 
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Minimal Sculpture I1 

originally intended to add some remarks to the previous chap- 
ter's addendum about minimal sculpture, still bemusing mu- 
seum directors, ar t  critics and ar t  historians; but my obser- 
vations grew to such lengths that I decided to make a separate 
chapter out of them. 

Minimal art,  whether painting, sculpture or music, seems 
to me aptly named because it is minimal in more than one 
way: 

1. I t  requires minimal time, effort, thought and talent to 
produce. 

2. I t  can be constructed, in most cases, with a minimum 
of expense. 

3. It has minimal aesthetic value. 



Naturally it has some aesthetic value. But all around you, 
in tens of thousands of different forms, are objects with aes- 
thetic value: trees, clouds, cats, people, buildings, cars, chairs, 
spoons, and so on. Almost anything has some aesthetic value. 
A pure expanse of a color has aesthetic value, but what is the 
point of coloring an entire canvas with a solid color (as mini- 
malist painter Ad Reinhardt did), framing it, and hanging it 
in a gallery? A paperclip has some aesthetic value, but is it 
worth erecting as a statue in a public park? Does minimal 
sculpture have enough aesthetic value to justify the enormous 
prices cities and museums pay for it? Is it worth the opaque 
prose that streams endlessly from the pens of top art critics? 

Picasso's Chicago statue is not as  red as it once was, but 
Chicagoans have grown accustomed to its "face." In 1987 they 
celebrated its 20th birthday by hanging the city's Medal of 
Honor on the thing, and holding a street celebration complete 
with cake and ice cream. Nobody booed the way they did when 
the statue was first unveiled to a crowd of 50,000 on August 
14, 1967. According to an Associated Press story (August 14, 
19871, Chicagoans still haven't figured out whether Picasso 
intended it to represent a woman with a huge nose, an Afghan 
hound or a baboon. Art Critic John Canaday, guardedly prais- 
ing the statue in the New York Times (August 27, 1967), found 
it "just plain ugly." If it proves to be an eyesore many years 
later, he concluded, it will be because its representative 
touches (eyes, nose, etc.) "become more and more distracting 
in a design that even now is marred by them." The Associated 
Press summed up the windy city's attitude with this verse: 

Happy Birthday to you. 
You're homely, it's true. 
Just a rusty old sculpture, 
But Chicago loves you. 

I hope no one thinks I am fond of statues of war heroes 
on horses. They are indeed eyesores, but at least they have 
the merit of reminding us of our nation's history. Most mini- 
mal sculpture that I see in our big cities, and even in small 
cities, reminds me of nothing so much as the ugliness of city 
landscapes. With right angles and circles all around us, the 
mind longs for the chaotic randomness of clouds and trees- 
for sculptured forms that will not inflict more geometrical 
regularity on our tired retinas. 



Take Carl Andre, for instance, whose pile of bricks I rid- 
iculed in the previous chapter. He was born in Quincy, Mas- 
sachusetts in 1935, and might have graduated from Kenyon 
University if the college hadn't expelled him after less than a 
semester. His longest lasting job, before he became world fa- 
mous, was the four years he worked as a brakeman, later a 
freight conductor, for the Pennsylvania Railroad. He was fired 
after a mistake caused a freight-car accident. As I type I have 
beside me a handsome book titled Carl Andre, Sculpture 1959- 
1977, by David Bourdon. It is one of the funniest books of art 
criticism ever to come my way. 

Andre's work, which has been exhibited in almost all the 
major museums of the United States, has one common de- 
nominator. It is made with modules-that is, identical, inter- 
changeable units that are put together in various ways, but 
left unjoined, held together only by gravity. The modules are 
ready-made, "found" objects such as bricks, cement blocks, 
sheets of metal, styrofoam planks, timber, ceramic magnets, 
and so on. As Barbara Rose says in her preface to Bourdon's 
book, they return "to their original state" after their "death as 
works." Bourdon is surely accurate when he writes "Every- 
body's six year old child could probably recreate an Andre 
work and the replica would be indistinguishable from the 
original." 

Early in his career Andre liked to stack his modules on 
top of each other the way children build towers with blocks, 
but then he shifted to his "flat period" in which the units are 
laid on the gallery floor or on outside ground. He wanted his 
sculpture to be "as level as water." Most of the time one could 
stand on his sculpture-for example, on his much admired 64 
square steel plates arranged on the floor like a large chess- 
board (see Figure 58). Here is how Bourdon rhapsodizes over 
this work: 

The gestalt and materiality of the work are immediately 
apparent. There is no suggestion that the piece is any more 
than what it appears to be. The sculpture does not significantly 
change as we circumambulate it. Andre's decisions in compos- 
ing the work are also self-evident: eight-inch modular particles 
are laid down in a square of eight rows of eight plates each. 
But the work holds the floor in a compelling way, functioning 
as a kind of zone within a larger space. Visually, the piece be- 
gins to come alive as we notice discrepancies and differences 
froni one square to another; the various scratches, marks and 
variations in color and surface texture assume an almost auto- 



FIGURE 58 Carl Andre's 64 Steel Square (1967). Courtesy of Paula 
Cooper Gallery, New York. Private collection, Florida. 

graphic quality. If we stand on the piece it tends to slip away 
in our peripheral vision, while the disconcerting way in which 
the tiles sway under our feet persuades us that the sculpture 
is not as  stark and inflexible as we may have first imagined. 

Another typical Andre work is Secant, a photograph of 
which graces the cover of Bourdon's book (see Figure 59). 
This consisted of 300 feet of brick-shaped fir timbers laid end 
to end like freight cars to loop across the grounds of the Nas- 
sau County Museum of Fine Arts, on Long Island. That this 
work, like so many of Andre's other "linear" works formed by 
putting modules end to end, could have been influenced by 
Andre's familiarity with freight cars is not lost on Bourdon: 

Writers on Andre are generally tempted to draw parallels 
between his experience with the Pennsylvania Railroad and his 
subsequent sculpture. It  is certainly easy to understand how 
his taste for regimented, modular components might have been 
affirmed by the interchangeable freight cars and the evenly 
spaced railroad ties. The rails and ties could have helped per- 
suade him that his sculpture should be horizontal, parallel to 
the earth, rather than standing, totem-like, upon it. The adapt- 
ability of the track to its terrain and the convergence of two or 
more lines in particular locations undoubtedly sharpened Andre's 
perception of "place." The artist acknowledges his railroad ex- 



FIGURE 59 Carl Andre's Secant (1977). Courtesy of Paula Cooper 
Gallery, New York. 

perience as a strong influence on his work. Whatever he learned 
in the rail yards, Andre emerged a much better sculptor. 

Andre's linear works also resemble roads. Ordinary roads, 
he once said, are ideal examples of beautiful sculpture. There 



is something to be said for this. Roads can indeed be beautiful 
when they wind about through lovely scenery. When Dorothy 
and her friends followed the yellow brick road to the Emerald 
City, it must have been a great aesthetic experience. But a 
row of bricks stretched across a museum floor? 

Not all of Andre's great works can be walked on. His S@ill 
consisted of 800 little plastic tiles scattered over a gallery 
floor. His much more famous Stone Field Sculpture (see Figure 
60) was constructed in 1977 on a grassy spot in Hartford, 
Connecticut, at  the corner of Main and Gold Streets, adjacent 
to a historic church and graveyard. This "sculpture" con- 
sisted of 36 boulders carried by a construction crew from a 
quarry in Bristol, then lowered by cranes on the grass to form 
a triangular pattern of rows starting with one boulder, then 
two, then three, and ending with a row of eight. (Mathemati- 
cians know 36 as a "triangular number.") The National En- 
dowment for the Arts and the Hartford Foundation for Public 
Giving paid Andre $87,000 for this. 

"Are you putting us on?" someone asked Andre. (New York 
Times, September 5, 1977.) 

"I may be putting myself on," Andre replied. "If I've de- 
ceived you, then I've deceived myself. It's possible." 

"This is worse than Stegosaurus," said Mayor George 
Athanson, referring to a gigantic, bright-orange, abstract model 
of a dinosaur that Alexander Calder had inflicted on the city 
a few years earlier. "It's just a bunch of rocks." 

FIGURE 60 Carl Andre's Stone Field Sculpture (1977). Courtesy of 
Paula Cooper Gallery, New York. 



Andre's intent, he told the press, was to "bring together 
geological time and human time-it's important that people 
remember that difference." The sculpture was designed, he 
added, "to extend the serenity" of the graveyard "into the bus- 
tling city." 

Here is a paragraph from a news account: 

However, New York welcomed Mr. Andre's exhibits at the 
Guggenheim Museum and at the Museum of Modern Art. The 
"Reef," a row of salmon pink styrofoam planks displayed in the 
Guggenheim driveway, and the "Water Body," nine narrow strips 
of metal arranged in a "constructivist abstraction" at the bot- 
tom of a pool, as well as  other Andre works were cheered by 
New York critics for their beauty and logic. One [John Russell] 
wrote in admiration for one of his sculptures: It "just sits there 
and minds its own business." 

The boulders are still sitting there in Hartford, I regret 
to say, minding their own business. 

Although I am discussing Andre's sculpture in a book about 
mathematics, actually his understanding of mathematics is 
severely limited. After the previous chapter ran in Scientific 
American, I received an amusing postcard from Andre in which 
he said he had been reading Scientific American for thirty years, 
but found my column beyond his comprehension. "My work," 
he told me, "owes more to my Swedish brick-laying grandfa- 
ther than to my mathematics, which never got beyond grade 
school. " 

Nevertheless, Andre has always found numbers intrigu- 
ing, especially square numbers and primes. He quite con- 
sciously used prime numbers in many of his works, such as  
Lever, in which 137 bricks were stacked side by side on the 
floor of New York's Jewish Museum, in 1966, to form a long 
bar that resembled a lever (see Figure 61). Andre is also im- 
pressed by number sequences, especially 1,2,3,4, . . . . in 
which you can count the bricks when they are in a straight 
line, or the number of bricks in each row of a triangular for- 
mation. The Way North, East, and South (Figure 62) must have 
taken Andre at  least three minutes to create. Four is a square 
number, though why "west" is not in the title is puzzling. 

Bourdon's final paragraphs are typical of the pompous 
chatter of art  critics: 

Andre deliberated long and hard at every stage of his re- 
nunciatory art, and the result is an oeuvre of exceptional strength 



FIGURE 61 Carl Andre's Lever (1966). Courtesy of Paula Cooper 
Gallery, New York. 

and vitality. Several of his sculptures are classics of the Mini- 
malist mode and represent a drastic culmination of the reduc- 
tive impulse-an impulse that did not originate full-blown with 
the Minimalists of the '60s, but which had been developed and 



FIGURE 62 Carl Andre's The Way North, East and South (1975). 
Photo by Geoffrey Clements. Courtesy of Paula Cooper Gallery, New 
York. Private collection. San Francisco. 
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honed by numerous predecessors, ranging from Malevich and 
Mondrian to Rothko, Newman and Reinhardt. The further min- 
imalization, or essentializing, by artists of the '60s was achieved 
mainly in terms of eliminating metaphysical references and 
emphasizing a more empirical kind of rationality. 

Andre's originality and his contribution to the reductive 
aesthetic is already a historic, certifiable fact. Originality and 
quality are not synonymous, however, and a t  times even anti- 
thetical. The enduring quality of Andre's work will be deter- 
mined later by others. For myself, I can only admire the strin- 
gent clarity of the sculpture, its commanding visual presence 
and stark, forthright physicality. The works strike me as  con- 
crete distillations of a unique, contemporary sensibility. 

14 1 



Bourdon's last paragraph is almost as vacuous as this de- 
scription of one of Andre's brick construction~ by Rosalind 
Krauss in her book Passages in M& Sculpture (Viking, 1977): 

Instead the fire-bricks remain obdurately external, as ob- 
jects of use rather than vehicles of expression. In this sense 
the ready-made elements can convey, on a purely abstract level, 
the idea of simple externality. 

New York Times critic John Russell, who informed us that 
Andre's bricks like to sit there and mind their own business, 
had this to say about Andre's sculpture (February 20, 1976): 

In its general operation, it is in fact closer to the prayer 
mats of Islamic art than to sculpture as  we have usually known 
it. The Tate piece is several inches thick, but a prototypical 
Andre may well be made up of thin plaques of metal that lie 
almost flush with the floor. Walking across one, we tread a field 
of light. 

The thralldom of a sculpture by Mr. Andre is owed to the 
clarity of his intention, to the frank and unambiguous way in 
which the materials are assembled and to the way in which a 
specifically American gift for plain statement has been applied 
to situations that in ordinary life are confused and contradic- 
tory. An Andre "is what it is," as a 17th-century philosopher 
said, "and not another thing." 

Sculpture for most museum visitors is something that 
clamors for our attention, takes up a lot of space and doesn't 
always deserve it and semaphores its messages from a long way 
away. An Andre is the antithesis of all this. Where other sculp- 
tors set up as dramatists, rhetoricians and demon persuaders, 
Mr. Andre comes on as a hermit who is concerned only to set 
his own surroundings in order. 

His work stands in this sense for order, resolution and an 
absolute simplicity. It steals upon us when we least expect it. 
It has what was defined not long ago as the prime characteris- 
tic of good new art: that it makes people wonder at first if it is 
art at  all. Once we have come to like it, we ask ourselves how 
we could ever have gotten on without it. 

Martin Ries, professor of art at Long Island University, 
made this reply in the New York Times (March 17, 1976) to a 
previous letter complaining about Andre's pile of bricks: 

As a long-time admirer of minimal art and especially Carl 
Andre's work (I gave him one of his first exhibitions in the early 
1960's when I was assistant director of the Hudson River Mu- 
seum) I would like to reply to Mr. Hodge's letter of March 1, 



in which he criticizes the Tate Gallery's purchase of Mr. Andre's 
sculpture. 

Mr. Hodge says he can admire the artistic merits of Con- 
stable and Van Gogh but the pile of bricks is "just a pile of 
bricks." His comparison (or anti-comparison) would be more 
accurate if he said he can appreciate the smears of colored lin- 
seed oil by Constable and Van Gogh but not Andre's structural 
arrangement of fired clay. 

A lot of people find profound meaning in this abstract bal- 
ance between the spiritual and the material, which manifests 
harmony, proportion and pure order; I think Mr. Hodge some 
day will enjoy this aspect of Mr. Andre's work as much as he 
now enjoys the expressionistic quality of the paintings of Con- 
stable and Van Gogh. 

Barbara Rose, wife of artist Frank Stella, wrote the pre- 
face to Bourdon's book about Andre. She calls Andre "the last 
Renaissance Man I ever knew" basing this on the fact that in 
addition to his sculpture Andre also writes shaped verse, "ca- 
cophonous atonal piano music," "unperformable operas," and 
"lyrics to mock pop tunes." He also has written novels, she 
said, that "became more and more abbreviated until they were 
but a paragraph in length, anticipating the contemporary at- 
tention span." I am reminded of the politician's rule that no 
one can be elected president unless he can put his central 
message on a bumper sticker, and of that classic minimal poem 
"To Fleas": 

Adam 
Had 'em. 

Andre stoutly denies that his bricks are symbolic of any- 
thing. "A brick is a brick," he likes to say. When Art Forum 
planned to run a cover photograph of an Andre work that con- 
sisted of 29 bricks (a prime number) in a row, they decided it 
would be simpler to put down their own bricks and photo- 
graph them. Andre was furious when he found out about this. 
The magazine killed the cover after Andre threatened to sue 
for $500,000 because, he said, "I didn't lay the bricks." An 
unidentified artist told New York magazine (see the bibliog- 
raphy) that an argument with Andre ended when Andre put 
his face up close to the man and shouted "Brick, brick, brick. 
. . ." 128 times before the man lost count. Perhaps he re- 
peated the word 13 1 times, a prime number. 

In 1985 Andre was arrested in Manhattan for murdering 
his wife. He was charged with pushing Ana Mendieta out of 



the hip-high, sliding-glass window of their one-bedroom 34th 
floor apartment on Mercer Street, in Greenwich Village. Two 
indictments were dismissed because certain evidence was 
deemed inadmissable. On February 1 1, 1988, a third indict- 
ment was settled without jury. The State Supreme Court judge 
ruled that Andre was not guilty because his guilt could not be 
proved beyond a reasonable doubt. (See the New York Times, 
February 12, 1988.) 

Ana, Andre's third wife, was a 36-year old Hispanic ab- 
stract artist, born in Cuba. She and Castro had been fellow 
law students, and Andre shared her left-wing political views. 
When the National Endowment for the Arts gave her a fellow- 
ship, she came to the United States to advance her art career. 

In the early 1970s, when "body art" was fashionable, she 
became its passionate promoter. In one exhibit, she lay in a 
tomb covered with flowers that seemed to grow out of her body. 
In one of her "rape series" works she lay nude in the woods, 
her rear covered with blood. In another, she was tied to a 
table, nude from the waist down, with blood on the floor be- 
neath her. In still another, she lay on a hotel roof, her body 
covered by a bloody sheet on which was placed a cow's heart. 
Ironically, after her fall her body was in fact covered with a 
bloodstained sheet. 

At Puffy's, an artist hangout bar at  Harris and Hudson 
Streets, a beer pitcher was labeled "Carl Andre Defense Fund." 
One customer contributed a brick. 

In recent years many angry controversies have erupted in 
big cities around the world over monuments that the public 
consider ugly. And not just minimal sculpture, but also pop 
representations such as Claes Oldenburg's mammoth base- 
ball bat in Chicago, the 4l/~-story clothespin in downtown 
Philadelphia that cost taxpayers $429,000, or the 16-feet high 
paperclip in Frankfurt, West Germany. The most publicized 
controversy was over Richard Serra's Tilted Arc (see Figure 
63). Serra is probably our best known minimalist sculptor. 
His Tilted Arc was a 12-feet tall, 120-feet long, 78-ton curved, 
slightly tilted wall of rusting steel that slashed across the 
Federal Plaza in lower Manhattan. 

The arc had been commissioned in 1979 by the art-in- 
architecture program of the federal government's General 
Service Administration. The agency gave Serra $175,000 in 
taxpayer money for this work. When it was installed in 198 1, 
a great hue and cry arose from workers in the area. Not only 
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did they think it ugly, but it blocked a view, forced them to 
detour around it, and invited offensive graffiti. 

"The work is a meaningless blob, an eyesore that ruins 
rare open spaces," wrote a Time reader (June 24,  1985). "Its 
only possible function is as a barrier against terrorists." An- 
other Time reader, in the same issue, suggested that holes be 
cut in the wall for pedestrians to walk through, and that the 
work be retitled Tilted Arc with Holes. 

Prominent people defended the arc: George Segal, Jacob 
Javits, Bess Meyerson, Joseph Papp, and Joan Mondale, wife 
of former vice president, Walter. Although the New York Times 
was critical of the arc on its editorial pages, its art critics 
defended it vigorously. Michael Benson, for example (May 19, 
1985) called it a work of "great complexity and imagination:" 

What also makes "Tilted Arc" appropriate to its site is its 
content. The work has a great deal to do with the American 
Dream. The sculpture's unadorned surface insists upon its 
identity as steel. The gliding, soaring movement recalls ships, 
cars and, above all, trains. As with many enduring works of 
American art and literature, behind the sculpture's facade of 
overwhelming simplicity and physical immediacy lies a deep 
restlessness and irony. 

In 1985 Serra was knighted in France by Francois Mit- 
terand. 

So loud was the public outcry over Serra's tilted wall that 
in 1989, after annoying New Yorkers for eight years, it was 
dismantled in the dead of night and carted off to be reassem- 
bled on a motor-vehicle compound in Brooklyn. Serra, furious 
over the removal of what he called a "site specific" work, lost 
a costly lawsuit to prevent this action. The U.S. government 
had to spend $50,000 more in taxpayer money to remove the 
wall. The Wall Street Journal headlined an editorial, "Good 
Riddance." 

I hope no one supposes that only philistines, uneducated 
and art ignorant, found the wall ugly. I could fill pages with 
quotations from artists, art critics, and art historians who re- 
gard all minimal art as  truly minimal in lowering aesthetic 
values almost to zero. I content myself with quoting only from 
two well known journalists and intellectuals. George Will, in 
his Newsweek column (I neglected to date my copy) blasted 
Serra for his arrogance, and minimal art in general for being 
"anti-intellectual" and "enveloped by ludicrous intellectualiz- 



ing.” John Simon called Serra a megalomaniac, with a “lust for
celebrity,” and a reputation that rested solely on publicity. One can
get nothing but “uglification” from Serra, he wrote

…. regardless of what the chorus of today’s incestuous art
experts may warble to the contrary. It is a wretched age that
perceives Serra, and countless others equally vacuous and
untalented, as having anything to do with any art other than
that of self-promotion. Thank goodness for the vox populi,
which, unacquainted with current art criticism, has the honesty
and courage to pronounce ugliness offensive. If the artist has
moral rights, let them be exercised where they do not clash
with the moral and aesthetic rights of the rest of the popula-
tion. The person who seeks out a work of art, however ques-
tionable, in a museum, gallery, or private collection has every
right to do so. But innocent multitudes who have a horror
thrust upon them in a public place near their homes or offices
may rightfully refuse to put up with it.

In 1987, San Jose, California, paid $8,000 for a minimal statue
made of several steel plates bolted together and painted red, blue,
black and white. After it was in place at a downtown plaza, some
construction workers, assuming it was junk they overlooked, hauled
it off to a scrap heap. In 1989 the persons running an Arts Festival
in Atlanta paid sculptor Frederick Nicholas $3,000 for his imitation
Andre—a huge pile of empty banana boxes. Those attending the
festival kicked the boxes all over the lot before a garbage truck was
able to cart them away. That same year David Mach, a London min-
imalist, sold the Brooklyn Museum twenty tons of unsold periodicals
that he and his assistants took a week to install in huge columns.
The museum was miffed when Mach refused to remove the maga-
zines after the show.

“Removing,” said Mach, “is not a creative thing. I’ve never taken
them down. That’s part of the deal.”
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Tangent Circles 

hen circles are tangent to one another, hundreds of beautiful 
problems arise, many of which have worked their way into 
the literature of recreational mathematics. Some historic ex- 
amples have already been discussed in previous book collec- 
tions of my Scientific American columns. In this chapter I shall 
take up a few more. There is no room for the proofs, but if 
interested readers will take the theorems as challenges to find 
proofs, they cannot help but strengthen their understanding 
of elementary plane geometry. 

We begin with a famous figure believed to have been first 
studied by Archimedes and known as the arbelos, from the 
Greek for "shoemaker's knife," because it resembles the blade 
of a knife used by ancient cobblers. It is the shaded region in 
Figure 64, bounded by the semicircles with diameters AB, 



FIGURE 64 The  arbelos, or  "shoemaker's knife," of Archimedes 

BC and AC. B can be any point on AC. Here are a few of the 
most amazing properties of the arbelos: 

1. The length of semicircular arc AC is, as is easily shown, 
equal to the sum of the arcs AB and BC. 

2. Draw BD perpendicular to AC. The area of the arbelos 
equals the area of a circle with diameter BD. 

3. BD divides the arbelos into two parts. Circles inscribed 
in each part are identical, each circle having a diameter of 
(AB x BC)IAC. The smallest circle circumscribing these 
twin circles also has an area equal to that of the arbelos. 

4. Draw a line tangent to arcs AB and BC. Tangent points 
E and F lie on lines AD and CD. 

5 .  EF and BD are equal and bisect each other. This en- 
sures that the circle with diameter BD passes through points 
E and F. 



6. In the early 1950's Leon Bankoff, a mathematician by 
avocation, made a curious discovery. (Bankoff is a Los An- 
geles dentist who describes himself as "Russian by extrac- 
tion." He edits the problems section of The Pi Mu Epsilon 
Journal, and he is known for his skill in composing and 
solving problems.) Bankoff improved on the discovery, 
credited to Archimedes, of the twin circles shown on each 
side of BD in Figure 64 as follows: Draw a circle (shown 
in broken outline) tangent to the three largest circles, and 
then draw a smaller circle (shown in bold) that passes 
through B and the points where the broken circle touches 
arcs AB and BC. This circle also is identical with Ar- 
chimedes' twin circles. Bankoff gives a proof in his article 
"Are the Twin Circles of Archimedes Really Twins?" No, 
they are not really twins, answers Bankoff; they are two 
circles in a set of triplets. 

7. Construct inside the arbelos what is called a train of 
tangent circles. The broken circle in Figure 64 is the first 
in the train. It can be continued as far to the left as one 
wishes, in the manner shown in Figure 65. Label the cir- 
cles C1, Cz, C3 and so on. The centers of all the circles in 
the train lie on an ellipse. The diameter of any circle C, is 
llnth the perpendicular distance from the center of that 
circle to the base line ABC. This remarkable result is in a 
fourth-century work by Pappus of Alexandria, who refers 
to it as an ancient theorem. 

The proof of Pappus' theorem is simple if one uses in- 
version geometry, inverting the entire figure with A as the 
center of inversion. This converts semicircles AB and AC 

FIGURE 65 The arbelos train 



to parallel lines, and the train becomes a set of equal cir- 
cles bounded by the two lines. You will find a good expla- 
nation of how this is done in Rodney T. Hood's article "A 
Chain of Circles". Pappus did not know inversion methods 
(they were not developed until the 19th century) and so his 
proof is more cumbersome. 

8. If AB equals 2 and AC equals 3, then the train of circles 
has many more surprises. The diameters of all circles in 
the train are rational fractions equal to 6/(n2 + 6). Thus C1 
equals 617, Cz equals 315 and so on. As reader Norman Pos 
pointed out in a letter, the center of C2 lies on the diameter 
of the outside circle that is perpendicular to AC. Moreover, 
the centers of C2 and C3 are on a line parallel to AC, and 
that is also true of the centers of C1 and C6. The latter re- 
sult is a special case of a more general theorem. If AB and 
AC are integral and AC equals AB + 1, the centers of every 
pair of circles whose subscripts have a product equal to 
AB xAC lie on a line parallel to AC. Hence if AB equals 3 
and AC equals 4, circle pairs with subscripts 1 and 12, 2 
and 6, and 3 and 4 all have centers on a line parallel with 
AC. (For a proof see M. G. Gaba's 1940 paper, cited in the 
bibliography.) 

9. If B divides AC in the golden ratio, many other striking 
properties result. These are discussed by Bankoff in his ar- 
ticle "The Golden Arbelos." A note to publishers: Bankoff 
has an unpublished manuscript of 10 chapters on the ar- 
belos, written in collaboraiton with the French mathema- 
tician Victor Thebault. 

Closely related to the arbelos is a surprising theorem dis- 
covered by Jakob Steiner, a 19th-century Swiss mathemati- 
cian, and depicted in Figure 66. A small circle is drawn any- 
where inside a larger one, and in the region between the circles 
a train is inscribed. In most cases the train will not exactly 
close to form a ring of tangent circles, that is, the end circles 
will overlap. In some cases, however, the train will form a 
perfect ring like the one shown with solid lines in the illustra- 
tion. When this happens, the train is called a Steiner chain. 
What Steiner discovered was that if the two initial circles al- 
low one Steiner chain, they allow an infinite number of chains. 
Put another way, no matter where you draw the first circle of 
the chain, if you add the other circles, the chain will always 
close exactly. An arbitrary second chain is shown in the illus- 
tration with broken lines. 



FIGURE 66 Jakob Steiner's chain 

As before, the easiest proof is by inversion geometry. One 
performs an inversion that transforms the two initial circles 
into concentric circles. The Steiner chain then becomes a chain 
of identical circles that fill the region between the concentric 
circles. Details are given in the book by J. H. Cadwell, listed 
in the bibliography. 

Solomon W. Golomb, whose contributions to recreational 
mathematics are widely known, was on a trip through Europe 
and found himself carrying a variety of coins of different sizes. 
The following thought occurred to him. Suppose n coins of 
varying size form a closed chain that exactly surrounds a cen- 
tral coin, as is shown in Figure 67. If the order of coins in the 
"wreath" is permuted, will the coins still form a perfect wreath? 

Most people guess yes, and there is even a "proof." Draw 
lines from the center of the interior coin that go between each 
pair of adjacent coins in the wreath, as is shown in the illus- 
tration. The sum of all these central angles must be 360 de- 



FIGURE 67 A false proof of Solomon W. Golomb's coin problem 

grees, and this fact seems to be independent of the way the 
coins are arranged. 

The proof is fallacious because, as  Golomb points out, it 
assumes that the radiating lines must be tangent to each pair 
of coins they pass between. That is not always the case, how- 
ever, and when it is not, the order of coins in the wreath can 
make a difference. Of course, if there are three coins in the 
wreath, permutations will have no effect because they merely 
give rise to rotations or reflections of the original figure. When 
there are four or more coins, it is easy, Golomb discovered, 
to find examples where the wreath closes in certain permu- 
tations but not in others. 

Differences between permutations are slight unless there 
are large discrepancies in coin sizes. Therefore if you arrange 
a half-dollar, a quarter, a nickel, a dime and a penny around 
a central circle, you will find that any permutation of the five 
coins seems to fit exactly. Nevertheless, the differences are 
there. I leave it to readers to find ways of proving this state- 
ment correct. You might also like to tackle another one of 
Golomb's discoveries. Given n coins, no two of which are alike, 
what is the largest number of different interior circles they 
can exactly surround by permuting their order? The answer 
is (n  - 1 )!/2. (The exclamation mark is a factorial sign.) Hence 
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for four coins there are three permutations, for five there are 
12, for six there are 60  and so on. 

Golomb poses an interesting unsolved question. Given n 
coins of different sizes, what procedures will minimize and 
what procedures will maximize the size of the circle they can 
exactly surround? Golomb has some conjectures for both al- 
gorithms. 

A completely different kind of problem about touching 
circles, not well known, involves the packing of n identical 
circles, without overlap, into a specified boundary of the 
smallest area. This problem has practical aspects, because 
cylinders such as cans and bottles are often packed in con- 
tainers with circular, square or other cross sections. What is 
the smallest area of the cross section that will make it pos- 
sible to pack n cylinders? To formulate the problem another 
way, given the area of a region and n identical circles, what 
is the largest diameter of the circles that allows packing them 
into the region without overlap? 

No general solution is known, even when the boundary of 
the region is as  simple as a circle, a square or an equilateral 
triangle, and in each case optimal packings have been estab- 
lished only for very low values of n.  When the boundary is a 
circle, proofs are known only for n = 1 through n = 10; they 
were first given in a 1969 paper by Udo Pirl. The cases n =  2 
through n =  10 (taken from "Packing Cylinders into Cylindri- 
cal Containers," by Sidney Kravitz, are shown in Figure 68.  
The minimum diameter of the outside circle is given below 
each figure, assuming that the small circles are of unit diam- 
eter. 

Kravitz supplies the best solutions he could find empiri- 
cally for n = 1 1 through n = 19. The case n = 12 is of special 
interest. One would think that the close packing shown at the 
left in Figure 6 9  would be the densest, but Kravitz found the 
slightly better pattern shown at the right. Michael Goldberg, 
in "Packing of 14, 16, 17 and 20 Circles in a Circle," gives 
better packings for the four cases cited in his title. His pack- 
ing for 17 circles was in turn improved by George E. Reis 
(see the bibliography) who also gives conjectured solutions 
for n = 2 1  through n = 2 5 .  

An inferior packing for n =  12 was the secret of "The 
Packer's Secret," a popular puzzle sold in France late in the 
19th century. The puzzle consisted of a circular box contain- 
ing 12 checkers. The task was to pack them into the box in a 



FIGURE 68 The densest packings of two through 10 unit circles 
into circles. The numbers below are the minimum diameters of the 
outside circle assuming unit circles inside. 

stable, rigid way, so that if the box were turned upside down 
without the lid, the checkers would not fall out. Shown in 
Figure 70 is a circle just the right size for working on the 
Packer's Secret with 12 U.S. pennies. Can you fit 12 pennies 
into this circle to form a rigid pattern in which no coin is 
movable? 

Searches have also been made for the densest packings 
of n identical circles into squares. It has been shown that as 
n increases, the density approaches .9069 + . That is the limit 
obtained by the familiar close packing of circles with their 
centers on a regular lattice of equilateral triangles. Proofs of 
the best packings are known, however, only for n= 1 through 
n= 9. Once again there is no known formula or algorithm that 
yields the densest packing. Figure 7 1, reproduced from Gold- 



FIGURE 69 Inferior packing of 12  circles (left) and conjectured 
best packing (right) 

FIGURE 70 Circle for working on "The Packer's Secret" with 12 
U.S. pennies 



FIGURE 7 1  The densest packings of one through nine identical 
circles into squares. The numbers below are the diameters of the 
circles. 

berg's "The Packing of Equal Circles in a Square," shows so- 
lutions for n = l through n =  9. In the illustration, instead of 
displaying unit circles inside the smallest square, Goldberg 
shows the largest circles that fit into a unit square. His paper 
also gives his best conjectures for n = 10 through n = 27,  and 
for selected higher values. 

Goldberg proves that in each best solution there must be 
a structure of touching circles that connects all four sides of 
the square, and that within this structure each circle must 
make contact with at  least three other circles or a side of the 



square. There may, however, be circles that are not part of 
this structure, as in the case of n= 7. 

Below each square in the illustration is the diameter of 
the largest possible circle, assuming that the square's side is 
1. In two cases, n = 6 and n = 7, proofs are not easy and have 
not been published. The case of n = 6 was first solved by Ron- 
ald L. Graham of Bell Laboratories. The case of n =  7 was 
announced by Jonathan Schaer in 1965. In a 1971 note in 
Mathematics Magazine, Schaer improved on Goldberg's con- 
jecture of n= 10. When the problem is extended to packing 
spheres into spheres or into cubes, it becomes enormously 
more intractable. Schaer has found solutions up to nine 
spheres, and Goldberg has made conjectures from nine to 27, 
and a few higher numbers. (Their two respective papers are 
cited in the bibliography.) 

The packing of n equal circles into equilateral triangles 
also presents difficult questions. Little has been established 
except that when n is a triangular number (in the sequence 1, 
3, 6, 10, 15 . . .), the densest packing is achieved by close 
packing in rows of 1, 2,  3, 4, 5 . . . circles. If the number of 
circles is a triangular number decreased by two or more, the 
remaining circles can always be shifted to fit into an equilat- 
eral triangle of smaller size. Hence if you remove two pool 
balls from inside the wood triangle used for closely packing 
15 balls at the start of a game, the remaining 13 balls can be 
rattled around so that none of them touches the boundary. 

Suppose just one ball is removed. Can the remaining 14 
balls be moved about until none touches the boundary? It seems 
unlikely, but no one knows for certain. Donald J. Newman 
has conjectured that in all cases where the number of balls 
(or circles) is one less than a triangular number there is no 
way to rearrange the balls to make possible a smaller enclos- 
ing triangle. The conjecture does not apply to the triangular 
number 1, and it is clearly true for 3. It seems to be true for 
the next number, 6, but I know of no formal proof that five 
balls cannot be squeezed into a smaller triangle than the one 
that holds six. 

We can ask similar questions about the densest packing 
of equal circles into any defined region, including regions with 
holes. If the region has no holes and is bounded by a convex 
closed curve, the best results obtained so far is by J. H. Folk- 
man and Graham in "A Packing Inequality for Compact Con- 
vex Subsets of the Plane." Given the area and perimeter of a 



region, the authors establish an upper bound for the maxi- 
mum number of unit circles that can be packed into it. 

From hundreds of other theorems about touching circles, 
I have space for just one more: an elegant result published in 
1968 by the Canadian geometer H. S. M. Coxeter. It is shown 
in Figure 72. An infinite sequence of circles is constructed so 
that every four consecutive circles are mutually tangent. It 
turns out that this sequence is unique when the ratio between 
consecutive radii is the one specified. The radius of each cir- 
cle is obtained by multiplying the radius of the next-smallest 
circle by the sum of the golden ratio and its square root, a 
number that is slightly more than 2.89. The contact points of 
the circles lie on an equiangular spiral shown by the broken 
curve. 

FIGURE 72 H. S. M. Coxeter's golden sequence of tangent circles 



The solution to "The Packer's Secret" is shown in Figure 73. 
In doing the actual puzzle, it is expedient to start with one 
penny in the center; after 11 more have been placed around 
it, the center penny can be moved out to the rim. 

I should have explained that the problem of finding the dens- 
est packing of n circles inside a given figure is equivalent to 

FIGURE 73 Solution to "The Packer's Secret" puzzle 



finding the maximum number of points that can be placed in- 
side the figure so that the smallest distance between a pair of 
points is as large as possible. Many papers on problems of 
this sort approach it in this form. 

When the chapter was first published in 1978, I left open 
the problem of the densest packing of 10 circles inside a 
square. This has since had an interesting history. In 1970 the 
late Michael Goldberg found a stable symmetric pattern in 
which the radius of each circle is 5/34 or .1470+. This was 
slightly improved in 1971 by Schaer who found a symmetric 
but unstable pattern that raised the radius to .I477 + . R. Mil- 
ano, in 1987, made still further progress with a stable sym- 
metric pattern which improved the radius to .I479 + . He was 
able to prove that no better symmetric pattern is possible. In 
1989 Guy Valette found an unstable asymmetric pattern which 

FIGURE 74 Conjectured solutions for ten circles by Goldberg (A), 
Schaer (B), Milano (C) and Valette (Dl. 



lifted the radius to .I48182 1 +. The four patterns are shown 
in Figure 74. 

Valette conjectured that his solution was the best pos- 
sible. This was shattered in 1990 by two French mathemati- 
cians, Michel Mollard and Charles Payan, who raised the ra- 
dius to .I48204 + . Following the tradition of previous workers 
on the problem, they conjectured that no better solution could 
be found. This remains to be proved. Their packing is shown 
in Figure 75. Their paper also gives improved solutions for 
1 1 ,  13, and 14 circles. Relevant papers are listed in the bib- 
liography. 

Goldberg called my attention to the fact that plastic cov- 
ers for standard six-and-a-half ounce cans of nuts are just the 
right size for working on the problem of tight packing 12 pen- 
nies in a circle. 

A famous circle packing problem that I did not have space 
to include is known as Malfatti's problem, after the Italian 
mathematician Gianfrancesco Malfatti who posed it in 1803 
but failed to solve it. What is the maximum total area of three 
circles that can be packed without overlap inside a given right 
triangle of any shape? Malfatti's solution: the three circles that 
are tangent to each other, and each also tangent to two sides 
of the triangle. Such circles came to be called Malfatti cir- 
cles. Many papers were published on how to construct such 
circles and calculate their sizes. 

Not until 1929 was it discovered that Malfatti circles are 
not always the solution. In an equilateral triangle, for ex- 
ample, an inscribed large circle with two smaller ones be- 

FIGURE 75 Improved 10-circle pattern by two French mathema- 
ticians. Is it the best? 



tween the big circle and two corners have a combined area 
greater than the Malfatti circles. In a very tall isosceles tri- 
angle, three circles in a column will defeat Malfatti circles. 

The final surprise came in 1967 when Michael Goldberg 
proved that Malfatti circles are never the solution! The follow- 
ing construction always beats Malfatti. Inscribe a circle in 
the given right triangle. Next, inscribe a circle tangent to the 
first circle and inside the smallest angle of the triangle. Fi- 
nally, inscribe a third circle either in the same angle or in the 
next larger angle, whichever allows the larger circle. (In some 
cases, the two circles have the same combined area.) 

Norman Pos wrote to tell me about another unexpected 
property of the arbelos. In Figure 65 when AB= 2 and AC= 3, 
the ellipse, which is the locus of the centers of the chain of 
circles, has its two foci exactly at  the centers of the circles 
with diameters A B  and AC. 

Garry Ford discovered that six dimes and a quarter seem 
to exactly surround a quarter. What are the relative diame- 
ters of the circles? Ford discussed the problem in a Technol- 
ogy Review piece (76, 1974, pages 57-58). 

Solomon Golomb's results on his problem of circles sur- 
rounding circles are given in his paper, "Wreaths of Tangent 
Circles," cited in the bibliography. 
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The Rotating Table an d 
other ~roblems 

Imagine a square table that rotates about its center. At each 
corner is a deep well, and at the bottom of each well is a 
drinking glass that is either upright or inverted. You cannot 
see into the wells, but you can reach into them and feel whether 
a glass is turned up or down. 

A move is defined as  follows: Spin the table, and when it 
stops, put each hand into a different well. You may adjust the 
orientation of the glasses any way you like, that is, you may 
leave them as they are or turn one glass or both. 

Now, spin the table again and repeat the same procedure 
for your second move. When the table stops spinning, there 
is no way to distinguish its corners, and so you have only two 



choices: you may reach into any diagonal pair of wells or into 
any adjacent pair. The object is to get all four glasses turned 
in the same way, either all up or all down. When this task is 
accomplished, a bell rings. 

At the start, the glasses in the four wells are turned up 
or down at random. If they all happen to be turned in the 
same direction at this point, the bell will ring at once and the 
task will have been accomplished before any moves were made. 
Therefore it should be assumed that at  the start the glasses 
are nol. all turned the same way. It is also assumed that you 
are not allowed to keep your hands in the wells and make 
experi~nental turnings to see if the bell rings. Furthermore, 
you must announce in advance the two wells to be probed at 
each step. You cannot probe one well, then decide which other 
well to probe. 

Is there a procedure guaranteed to make the bell ring in 
a finite number of moves? Many people, after thinking briefly 
about this problem, conclude that there is no such procedure. 
It is a question of probability, they reason. With bad luck one 
might continue to make moves indefinitely. That is not the 
case, however. After no more than n correct moves one can 
be certain of ringing the bell. What is the minimum value of 
n, and what procedure is sure to make the bell ring in n or 
fewer ~noves? 

Consider a table with only two corners and hence only 
two wells. In this case one move obviously suffices to make 
the bell ring. If there are three wells (at the corners of a tri- 
angular table), the following two moves suffice. 

1. Reach into any pair of wells. If both glasses are turned 
the same way, invert both of them, and the bell will ring. 
If they are turned in different directions, invert the glass 
that is facing down. If the bell does not ring: 

2. Spin the table and reach into any pair of wells. If both 
glasses are turned up, invert both, and the bell will ring. If 
they are turned in different directions, invert the glass 
turned down, and the bell will ring. 

Although the problem can be solved in a finite number of 
moves when there are four wells and four glasses, it turns out 
that if there are five or more glasses (at the corners of tables 
with five or more sides), there are no procedures guaranteed 
to complete the task in n moves. 



John Horton Conway's path-breaking book On Numbers and 
Games (1  976) brought him a flood of correspondence suggest- 
ing new games that could be analyzed by his remarkable 
methods. One such suggestion, from H. W. Lenstra of Am- 
sterdam, led Conway to develop a new family of games, one 
of the best of which he calls turnablock. 

Turnablock is played on any n-by-n checkerboard, using 
n2 counters with sides of different colors. The counters in- 
cluded in the board game Othello (a new name for the old 
British game of reversi) can be used for turnablock, or count- 
ers can be made by pairing poker chips of different colors. I 
shall call the two colors black and white. Here I shall de- 
scribe only the simplest nontrivial version of the game, the 
one played on the three-by-three board. 

At the start of the game the counters may be arranged in 
any pattern, but for the purposes of this problem assume that 
the game starts with the alternating-color pattern shown in 
Figure 76. Each player moves by turning over all the count- 
ers in any a-by-b rectangular block, where a and b are any 
two positive integers from 1 through 3. Thus a player's block 
may be a single counter, a one-by-two "domino" (oriented hor- 
izontally or vertically) or any larger configuration up to the 
entire three-by-three board. 

The Rotating Table and Other Problems 

FIGURE 76 The game of turnablock 
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There is one essential rule in turnablock: A block may be 
reversed only if there is a black counter in its lower right- 
hand corner. It is assumed that both players are seated on 
the same side of the board; otherwise the player on one side 
may turn a block only if there is a black counter in what for 
him is the upper left-hand corner. The two players take turns 
making moves; each player must turn a block when it is his 
move, and the player whose move leaves all the counters with 
the white side up is the winner. The rule guarantees that 
eventually all the counters will be turned with their white 
side up and the game will end. With the starting pattern shown 
in the illustration the first player can always win if he plays 
correctly. What are his winning first moves, and what must 
his playing strategy be? 

N. J. A. Sloane of Bell Laboratories, the author of the valu- 
able reference work A Handbook of Integer Sequences, intro- 
duced into number theory the concept of the "persistence" of 
a number. A number's persistence is the number of steps re- 
quired to reduce it to a single digit by multiplying all its digits 
to obtain a second number, then multiplying all the digits of 
that number to obtain a third number, and so on until a one- 
digit number is obtained. For example, 77 has a persistence 
of four because it requires four steps to reduce it to one digit: 
77+49+36+18+8. The smallest number of persistence one 
is 10, the smallest of persistence two is 25, the smallest of 
persistence three is 39 and the smaller of persistence four is 
77. What is the smallest number of persistence five? 

Sloane determined by computer that no number less than 
los0 has a persistence greater than 1 1 .  He conjectures that 
there is a number c such that no number has a persistence 
greater than c. Little is known about persistences in base no- 
tations other than 10. In base two the maximum persistence 
is obviously one. In base three the second term of the persis- 
tence sequence for any number is either zero or a power of 2. 
Sloane conjectures that in base three all powers of 2 greater 
than 2'' include a zero. Calculations show that Sloane's con- 
jecture is true up to 2500, but there is no formal proof of it. Of 
course, any number with zero as one of its digits is reduced 
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to zero on the next step. Hence if the conjecture is true, it 
follows that the maximum persistence in base three is three, 
as is illustrated by the following sequence: 222,222,222, 
222,222-215 (which equals 1,122,221,122 in base threet,  
1,012-0. Sloane also conjectures that there is a number c for 
any base notation b such that no number in base b has a per- 
sistence greater than c.  

Let us call Sloane's persistence a multiplicative persis- 
tence to distinguish it from additive persistence, a term intro- 
duced by Harvey J. Hindin, then a chemist at  Hunter College, 
after he had learned of Sloane's work. The additive persis- 
tence of a number is the number of steps required to reduce 
it to one digit by successive additions. Recreational mathe- 
maticians and accountants know this process as "casting out 
nines" or obtaining a number's "digital root," procedures that 
are equivalent to reducing the number modulo nine. For ex- 
ample, 123,456,789 has an additive persistence of two: 123, 
456,789+45-9. 

Unlike multiplicative persistence, additive persistence is 
relatively trivial and almost everything about it is known. For 
example, in base two the smallest number of additive persis- 
tencefouris 1,111,111. Inbasethreethenumber is 122,222, 
222. What is the smallest number of additive persistence four 
in base lo? 

Three remarkable parodies of Edgar Allan Poe's "The Raven" 
appeared in issues of Word Ways, a fascinating journal of rec- 
reational linguistics edited and published by A. Ross Eckler 
(Spring Valley Road, Morristown, N. J. 07960). Each parody 
is based on a specific form of wordplay familiar to readers of 
Word Ways. All three poems parody the entire Poe poem, but 
I shall quote only the first stanzas of each. 

( 1 )  
Midnight intombed December's 

naked icebound gulf. 
Haggard, tired, I nodded, toiling 

over my books. 
Eldritch daguerreotyped dank 

editions cluttered even my bed; 



Exhaustion reigned. 
Suddenly, now, a knocking, echoing 

door I cognized: 
"Eminent Boreas, open up no door! 
Go, uninvited lonely frigid haunt! 
Avaunt, grim guest--and roar!" 

(2) 
On one midnight, cold and dreary, 

while I, fainting, weak and weary, 
Pondered many a quaint and ancient 

volume of forgotten lore, 
While I studied, nearly napping, 

suddenly there came a tapping, 
Noise of some one gently rapping, 

rapping at the chamber door. 
"Oh, some visitor," I whispered, 

"tapping at the chamber door, 
Only one, and nothing more. " 

(3) 
On a midnight, cool and foggy, 

as I pondered, light and groggy, 
Ancient books and musty ledger 

not remembered any more, 
As I nodded, all but napping, 

there I sensed a muffled tapping, 
Very much a hushful rapping, 

just behind my attic door. 
" 'Tis a guest, mayhap, " I muttered, 

"knocking at my attic door- 
I can't judge it's any more." 

The first parody is by Howard W. Bergerson, author of 
the Dover paperback Palindromes and Anagrams. He set him- 
self such a difficult task that it was impossible to retain Poe's 
original meter and rhyme scheme. The other two parodies are 
by Eckler. The last was harder to write, but in both cases he 
was able to preserve the meter and rhyme scheme of the orig- 
inal. What curious linguistic structures underlie the paro- 
dies? 

RECTANGLING T H E  RECTANGLE 

There is a classic dissection problem known as squaring the 
square: Can a square be cut into a finite number of smaller 
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squares no two of which are the same size? The solution to 
this problem was discussed in an article by graph theorist 
William T. Tutte that is reprinted in my 2nd Scientific Ameri- 
can Book of Mathematical Puzzles & Diversions. At the time 
Tutte wrote, the best solution known ("best" meaning with a 
minimum number of different squares) required 24 squares. 
In 1978 this figure was lowered to 21 squares by A. J. W. 
Duijvestijn, a Dutch mathematician, as  was reported in Sci- 
entific American (June, 1978, pages 86-88, see Figure 77). It 
had been known that 21 was the smallest number possible, 
and Duijvestijn was also able to show that his pattern for that 
number of squares is unique. More recently he has found two 
squared squares containing 22 squares and the best solution, 

FIGURE 77 The lowest-order perfect square, discovered by 
A. J. W. Duijvestijn 



also with 22 squares, for squaring the domino (a rectangle 
with one side twice the length of the other). See Duijvestijn's 
paper "A Simple Perfect Squared Square of Lowest Order," 
in Journal o f  Combinatorial Theory, Series B, 25, 1978, pp. 
240-243. 

A somewhat analogous problem is to divide a nonsquare 
rectangle into the minimum number of smaller rectangles in 
such a way that no two sides of two different rectangles have 
the same length. It is not hard to show that the minimum 
number of internal rectangles is five. Now add the condition 
that all sides of all six rectangles (including the outer one) are 
integers. Scott Kim has proved that no solution is possible in 
which the integers 1 through 12 are used for the twelve dif- 
ferent edge lengths, although one can come close. Figure 78, 
top left, shows a solution by Kim that includes 11 twice and 
omits 10. If the sides of the outside rectangle are ignored, the 
conse~cutive integers from 1 through 10 will do the trick, as 
Ronald L. Graham has proved with the rectangle shown in 
Figure 78, top right. 

Figure 78, bottom, is reproduced from Mathematical Puz-  
zles, a. challenging collection by Stephen Ainley (G. Bell and 
Sons, Ltd., 1977, page 59). It displays one of the two solu- 
tions in which all twelve edges are different, although not 
consecutive, and the area of the outside rectangle is reduced 
to 128. Ainley calls this a minimal area but gives no proof. 

Now relax the conditions slightly so that only the ten dif- 
ferent edges of the five internal rectangles must be distinct 
and integral. What solution has an outer rectangle of the 
smallest area? This problem was first solved by C. R. J. Sin- 
gleton, who sent it to me in 1972. There are two solutions. 
Can you find them? 

The more difficult but closely related problem of finding 
the smallest rectangle that can be divided into incomparable 
rectangles was posed by Edward M. Reingold as  Problem 
E24212 in The  American Mathematical Monthly (vol. 80, 1973, 
p. 69); a solution was published in the same journal the fol- 
lowing year (Vol. 81, No. 6, June-July, 1974, pages 664-666). 
Two rectangles are called incomparable if neither one can be 
placed inside the other and aligned so that corresponding sides 
are parallel. Reingold, Andrew C. C. Yao and Bill Sands, in 
"Tiling with Incomparable Rectangles" (Journal o f  Recrea- 
tional Mathematics, Vol. 8, 1975-76, pages 112-119), prove 
many theorems about this problem. 
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The minimum number of incomparable rectangles needed 
to tile a larger rectangle is seven. If all sides are integral, the 
outside rectangle with both the smallest area and the small- 
est perimeter is the 22-by-13 rectangle shown in Figure 79. 
It was found by Sands. A square can be tiled with seven in- 
comparable rectangles having integral sides if and only if its 
side is 34 or larger, but eight rectangles can tile a square of 
side 27. This square is the smallest one known that can be 
tiled with incomparable rectangles, but it has not been proved 
to be the smallest one possible. For details consult the paper 
by Reingold, Yao and Sands. 

In 1975 the first problem, of rectangling the rectangle, 
was generalized to three dimensions by Kim. There is an el- 
egant proof that a cube cannot be cut into smaller cubes no 
two of which are alike. (See my 2nd Scientific American Book 
of  Mathematical Puzzles & Diversions, page 208.) Can a cube 
be "boxed" by cutting it into smaller boxes (rectangular par- 
allelepipeds) so that no two boxes share a common edge length? 
The answer is yes, and Kim was able to show that the mini- 
mum number of interior boxes is 23. Later William H. Cutler 



FIGURE 79 The smallest rectangle that can be tiled with incom- 
parable rectangles 

devised a second proof that 23 is minimal. Cutler found 56 
essentially different ways to box the cube. If all the edges of 
such a cube are integral, the smallest cube that can be boxed 
is not known. (See "Subdividing a Box Into Completely Incon- 
gruen.t Boxes," by William Cutler, in Journal o f  Recreational 
Mathematics, 12, 1979-1980, pp. 104-1 11 .) 

A.nother unsolved problem is to determine the noncubical 
box of smallest volume that can be sliced into 23 (or possibly 
more) boxes with no edge in common and all edges integral. 
Cutlel- found a box that is 147 by 157 by 175 and splits into 
the following 23 boxes: 
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It is not easy to fit these boxes together to make the large 
box. As far as I know no one has worked on a three-dimen- 
sional version of Reingold's incomparable rectangles. 

1. The puzzle shown in Figure 80 is reproduced from 
the September-October, 1978 issue of the magazine 
Games. The task is to trace in the larger figure a shape 
geometrically similar to the smaller one shown below 
it. 

2. The puzzle shown in Figure 81 is from a special 
issue of the French magazine Science et Vie (Septem- 
ber, 1978) that was devoted entirely to recreational 
mathematics. In each row the third pattern is ob- 
tained from the first two by applying a rule. What is 
the rule, and what pattern goes in the blank space in 
the third row? 

3. The trapezoid shown in Figure 82 is called a tria- 
mond, or an order-three polyiamond, because it can be 
formed by joining three equilateral triangles. In a show 
last fall at  the 55 Mercer Gallery in New York, Denis 
McCarthy exhibited a striking tessellation made up of 
174 of these shapes. They were cut from corrugated 
cardboard, so that under slanting light their ribbed 
surfaces would create patterns of light and dark tria- 
monds that would vary with the position of the viewer 
[see Figure 831. 

There is an old puzzle that asks how to cut the 
triamond into four congruent parts. Figure 82 gives 
the traditional solution. Richard Brady, a mathemat- 
ics teacher in Washington, D.C., tells me that when 
Andrew Miller, one of his pupils, encountered the 
problem in Harold R. Jacobs' Geometry (W. H. Free- 
man and Company, 1974, page 188), he found a differ- 
ent solution. In Miller's new solution all four regions 
do not have the same shape as the larger figure, but 
they are identical if one or more may be turned over. 
What is the new solution? 



FIGURE 80 Trace the shape of the smaller figure in the larger one 



The Rotatins Table and Other Problems I 

FIGURE 8 1 Find the rule 

FIGURE 82 Do it another way 



FIGURE 83 Detail of Denis McCarthy's tessellation of 174 tria- 
monds 

I had confined rectangling to non-squares. If the outer "rec- 
tangle" is allowed to be square, it can be cut into five rectan- 
gles for which the ten different sides have the lengths 1 through 
10, and the outside square has a side of 1 1. This pretty pat- 
tern, discovered by M. den Hertog, of Belgium, is shown in 
Figure 84. 

I said I knew of no work on incomparable tiling of cu- 
boids (rectangular parallelepipeds) by smaller cuboids-that 
is, a tiling such that given any pair of the boxes, neither will 
fit inside the other. Just such work was discussed by Richard 
Guy in his note on "How Few Incomparable Cuboids Will Tile 
a Cube?' (American Mathematical Monthly, 91, 1984, pp. 624- 
629.) The smallest number of incomparable cuboids that will 
tile a cube is known to be at  least seven, and the smallest 
number that will tile a noncubical cuboid is six. 

In a later note on "Unsolved Problems," (Ibid, 92, 1985, 
pp. 725-732) Guy reports on several remarkable discoveries 
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FIGURE 84 A rectangled square of sides 1 through 11, and area 
of 121 

by Charles H. Jepsen, of Gringll College. Jepsen covers them 
at greater length in his paper "Tiling with Incomparable Cu- 
boids," in Journal of Recreational Mathematics, 59, 1986, pp. 
283-292. He proves that no incomparable tiling of a cuboid 
can have fewer than six pieces, and gives an example of such 
a tiling of a 3 x 5 x 9 cuboid, along with a proof that its 
volume of 135 is minimal. He also proves that no tiling is pos- 
sible of a 3 x 3 x C cuboid. 

Jepsen also gives an incomparable tiling of a 10 x 10 x 
10 cube with seven pieces, and conjectures that its lo3 vol- 
ume is minimal. The paper closes with four unanswered ques- 
tions. 

The following five moves will suffice to get all four glasses in 
the wells of the rotating table turned either all up or all down. 

1. Reach into any diagonal pair of wells. If the glasses are 
not both turned up, adjust them so that they are. If the bell 
does not ring: 



2. Spin the table and reach into any adjacent pair of wells. 
If both glasses are turned up, leave them that way; other- 
wise invert the glass that is turned down. If the bell fails 
to ring, you know that now three glasses are turned up and 
one is turned down. 

3 .  Spin the table and reach into any diagonal pair of wells. 
If one of the glasses is turned down, invert it and the bell 
will ring. If both are turned up, invert one so that the glasses 
are arranged in the following pattern: 

Up Down 
Up Down 

4. Spin the table and reach into any adjacent pair of wells. 
Invert both glasses. If they were both turned in the same 
direction, the bell will ring; otherwise the glasses are now 
arranged in the following pattern: 

UP Down 
Down Up 

5 .  Spin the table, reach into any diagonal pair of wells and 
invert both glasses. The bell will ring. 

R.onald L. Graham of Bell Laboratories and Persi Dia- 
conis of Harvard University have together considered two ways 
of generalizing the problem. One is to assume that the player 
has rrhore than two hands. If the number of glasses n is greater 
than 4, the problem is solvable with n - 2 hands if and only if 
n is inot a prime number. Therefore for five glasses (5 is a 
prime) the problem is not solvable with 5  - 2, or 3 ,  hands. It  
may be that if n is a composite number, then for some values 
of n the problem can be solved with fewer than n - 2  hands. 
The problem can also be generalized by replacing glasses with 
objects that have more than two positions. 

Ted Lewis and Stephen Willard, writing on "The Rotating 
Table" in Mathematics Magazine ( 5 3 ,  1980, pp. 174-1 7 5 )  were 
the first to publish a solution for the general case involving a 
rotating polygonal table with n wells, and a player with k hands 
whom they called a "bell ringing octopus." They showed that 
the player can always force the bell to ring in a finite number 
of steps if and only if k is equal or greater than ( 1  - l/p)n, 
where p is the largest prime factor of n. 

This result was also reached independently by a number 
of readers. Unless I have misplaced some letters they were 
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Lyle Ramshaw, Richard Litherland, Eugene Gover and Nis- 
han Krikorian, Richard Ahrens and John Mason, and Sven 
Eldring. The most detailed proof, along with related results 
and conjectures, can be found in "Probing the Rotating Ta- 
ble," by Ramshaw and William T. Laaser, in The Mathemati- 
cal Gardner, edited by David A. Klarner (Wadsworth, 198 1, 
pp. 288-307). 

Two amusing robot variations were proposed by Albert 
G. Stanger as Problem 1598, "Variations on the Rotating Ta- 
ble Problem," in the Journal of  Recreational Mathematics ( 19, 
1987, pp. 307-308). 

1. Instead of reaching into the wells, indicate to a robot 
the two you want probed. The robot does the reaching, then 
says either "Same" (if both glasses have the same orienta- 
tion), or "Different." You then command the robot either to 
flip no glass, flip both, or flip only one which he selects at  
random. 

2. This is the same as  the previous variant except that the 
robot may tell a lie at any time. 

In his solution (Ibid, 20, 1988, pp. 312-314), Stanger 
showed that in both variants the bell can be made to ring in 
a finite number of steps. He gives a five-step solution for the 
first variation, and a seven-step solution for the second. In the 
second strategy, it makes no difference if the robot always 
tells the truth, always lies, or mixes truths and lies, because 
the strategy pays no attention to what the robot says! This 
surprising strategy, in which you pay no attention to any- 
thing, provides a seven-step solution to the original problem. 
It had been sent to me earlier in a March 1979 letter from 
Miner S. Keeler, president of the Keeler Brass Company in 
Grand Rapids, Michigan, who expressed surprise that I had 
not mentioned it when I answered the original problem. Here 
is how it works: 

1. Invert any diagonal pair. 

2. Invert any adjacent pair 

3. Invert any diagonal pair. 

4. Invert any single glass. 

5. Invert any diagonal pair. 

6. Invert any adjacent pair. 

7. Invert any diagonal pair. 



If you don't believe these steps are certain to ring the bell 
after at most seven steps, try it out by placing four playing 
cards on the table in any pattern of up and down. Regardless 
of the initial pattern, you'll find that the strategy will produce 
either four up cards or four down cards in at most seven moves. 

In a note added to Stanger's answer to his problem, 
Douglas J. Lanska generalized the robot variation to p wells 
and ( I  hands. He pointed out that if the robot always lies or 
alwalys tells the truth it is not necessary to know which is the 
case. Simply follow the n-step strategy on the assumption that 
the robot is a truthteller. If the bell fails to ring after n steps, 
you know the robot is a liar. Then repeat the same n steps, 
but n.ow reverse the robot's answers. The bell will ring in an- 
other n steps, or 2n steps in all. 

(;over and Krikorian, in a later letter, reported some re- 
sults on rotating cubes and other regular polyhedra. 

I first heard of the original problem from Robert Tappay, 
a Toronto friend, who was told of it by a mathematician at the 
University of Quebec. He in turn had found it in a test given 
to Russian mathematics students. Someone in Poland, he told 
Tappay, had written his doctor's thesis on how people go about 
trying to solve the problem. 

The jtirst player's strategy for winning John Horton Conway's 
order-three game of turnablock requires numbering the nine 
cells as  is shown at the top of Figure 85. The player must 
only make moves that leave black counters on cells whose 
numbers have a "nim sum" of zero. The nim sum of a collec- 
tion of numbers is traditionally obtained by writing the num- 
bers in binary form and adding without carrying. If all the 
digits in the total are zero, then the nim sum is zero. Conway 
suggests a simpler procedure for finding a nim sum: express 
each of the numbers to be added as a sum of distinct powers 
of 2, and then cancel pairs of like powers. If no powers re- 
main, then the nim sum is zero; otherwise the nim sum is 
simply the sum of the remaining powers. For example, con- 
sider 1 + 5 + 12. Writing each number in this expression as the 
sum of distinct powers of 2 gives 1 + 4 + 1 + 8 + 4. The pairs of 
1's and 4's cancel, leaving a nim sum of 8. Similarly, consider 
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FIGURE 85 Winning strategies for three-by-three turnablock 

1 + 2 + 5 + 6. This expression becomes 1 + 2 + 4 + 1 + 4 + 2. All 
the powers cancel, and the nim sum is zero. 

The dots in Figure 85 indicate the blocks that can be 
turned over for a winning first move. In other words, after 
each of these moves black counters are left on cells whose 
numbers have a nim sum of zero. Any second move by the 
other player will necessarily leave black counters on cells with 
a nonzero nim sum. The first player will always be able to 
respond with a zero nim-sum move, and by continuing in this 
way he is sure to win. 

Figure 86, top, supplied by Conway, gives the cell num- 
bering for all rectangular turnablock boards with sides from 
one through eight. The numbering of an a-by-b board smaller 



FIGURE 86 Strategy chart for turnablock (left). Smallest numbers 
with persistence 11 or less (right). 

Persistence 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

than the order-eight board is given by the a-by-b rectangle in 
the upper left-hand corner of the matrix. The numbers in the 
cells are obtained by a process called nim multiplication, which 
you will find explained in Conway's On Numbers and Games 
(Academic Press, 1976, page 52). 

Number 

10 

25 

39 

77 

679 

6,788 

68,889 

2,677,889 

26,888,999 

3,778,888,999 

277,777,788,888,899 

The smallest number in base 10 of multiplicative persistence 
5 is 679. The chart in Figure 86, bottom, gives the smallest 
numbers with multiplicative persistence of 11 or less. It is 
taken from N. J. A. Sloane's paper "The Persistence of a 
Number," in Journal of Recreational Mathematics (6, 1973, pp. 
97-98). 

The smallest number in base 10 of additive persistence 4 
is 191,999,999,999,999,999,999,999. The sum of the digits in 
this number is 199, the smallest number of additive persis- 
tence 3. The sum of the digits in 199 is 19, the smallest num- 
ber of additive persistence 2. The sum of the digits in 19 is 
10, the smallest number of additive persistence 1. More gen- 
erally, the second step in the sequence for the smallest num- 
ber of additive persistence k gives the smallest number of ad- 
ditive persistence k - 1. All such numbers start with 1 and 
are followed by 9's. Therefore the smallest number of additive 
persistence 5 is the number consisting of 1 followed by 



2,222,222,222,222,222,222,222 9's. For further discussion of 
the problem see Harvey J. Hinden's "The Additive Persis- 
tence of a Number" (Journal of Recreational Mathematics, 7, 
1974, pp. 134-135). 

The Rotating Table and Other Problems 

The first parody of Edgar Allan Poe's "The Raven" is by How- 
ard W. Bergerson, and is called an automynorcagram. The first 
letters of each word in the parody, taken in the order they 
appear, spell out the first verse of the parody. For the com- 
plete parody see Word Ways (8, 1975, pp. 2 19-222). 

The second parody of Poe's poem is by A. Ross Eckler, 
editor and publisher of Word Ways. It is homoliteral, that is, 
each consecutive pair of words have at least one letter in 
common. The full parody appears in Word Ways (9, 1976, pp. 
96-98). 

The third parody, also by Eckler, is found in Word Ways 
(9, 1976, pp. 231-233; November, 1976). It is heteroliteral, 
that is, each pair of consecutive words has no letter in com- 
mon. 

A well known American poet who asked me not to men- 
tion his name took issue with my statement that it is not pos- 
sible to write a parody of "The Raven" in which the initial 
letters of each word spells out the original stanzas, and at the 
same time retain Poe's rhyme and meter scheme. Here is how 
he managed it: 

187 

One November evening, nodding over volumes ever-plodding, 
My bedeviled eyes regretting every volume, evermore 
Nincompoopishly I noodled, garnered nonsense-rhymes, or doodled, 
Doing interlineations nine-times gerrymandered o'er: 
Vain, elusive ruminations, variations on "Lenore, " 

Uttering mutterings encore. 

Shh! Egad! Verandah-tapping! Ectoplasmical rap-rapping 
Preternaturally lapping one's dilapidated door! 
Inchwise noise gone madly yowling by each dulled ear, vampire-howling 
Implings licking every doorway, every yielding entrydoor, 
Shades ranged everywhere, grim rappers ever tougher to ignore, 

Noisily gnashing extempore. 

"Visitors!" exclaimed, rewoken, Yours Voluminously. "Oaken 
Laminationwork unbroken, metalclad exterior, 
Even vault-thick engine-metal reinforcement may outfettle 



Regulation Elementals, not Immeasurables nor 
Cosmic Omnicompetences. My poor ostel S open. Pour 

In, sweet heebiejeebs, like yore." 

I originally said that Singleton's problem had only one solu- 
tion, and the one I gave was incorrectly drawn. In 1979 I 
received a letter from M. den Hertog, containing much inter- 
esting material on rectangling theory. He showed that for every 
recta.ngled rectangle one could obtain another pattern by us- 
ing tlie same side lengths. The two solutions shown in Figure 
87 appeared in the Journal o f  Recreational Mathematics ( 1 2 ,  
1979-80, pp. 147-148) as a solution by Jean Meeus to Prob- 
lem 73 1. 

1. The solution is shown in Figure 88. The puzzle is adapted 
fronn an optical illusion in Charles H. Paraquin's Eye  Teas- 
ers; Optical Illusion Puzzles (Sterling Publishing Co., Inc., 
1978). 

FIGURE 87 The only two solutions to Singleton's puzzle 
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FIGURE 88 Solution to a problem 

FIGURE 89 Triamond divided into four identical regions 



2. The rule for obtaining the third pattern in each row is 
to superpose the first two patterns and eliminate any lines 
they have in common. Hence the pattern to be placed at 
the end of the third row is simply a square. 

3. Figure 89 displays the only other way the triamond can 
be cut into four identical regions. 



Does Time Ever Stop? 
Can the Past 
Be Altered? 

"It is impossible to meditate on time and the mystery of the creative 
passage of nature without an overwhelming emotion at  the limitations of hu- 
man intelligence." 

-ALFRED NORTH WHITEHEAD, 
The Concept of Nature 

T here has been a great deal of interest among physicists of late 
in whether or not there are events on the elementary-particle 

l e v e l  that cannot be time-reversed, that is, events for which 
imagining a reversal in the direction of motion of all the par- 
ticles involved is imagining an event that cannot happen in 
nature. Richard Feynman has suggested an approach to 
quantum mechanics in which antiparticles are viewed as par- 
ticles momentarily traveling backward in time. Cosmologists 
have speculated about two universes for which all the events 
in one are reversed relative to the direction of time in the 
other: in each universe intelligent organisms would live nor- 
mally from past to future, but if the organisms in one universe 
could in some way observe events in the other (which many 



physicists consider an impossibility), they would find those 
event!; going in the opposite direction. It has even been con- 
jectured that if our universe stops expanding and starts to 
contract, there will be a time reversal, but it is far from clear 
what that would mean. Most of the speculations of this kind 
are quite recent, and interested readers will find many of them 
examined in four chapters of my New Ambidextrous Universe. 

Iri this chapter I shall consider two bizarre questions about 
time 1.-hat are not discussed in the book. Indeed, these ques- 
tions are of so little concern to scientists that only philoso- 
phers and writers of fantasy and science fiction have had much 
to say about them: Is it meaningful to speak of time stopping? 
Is it meaningful to speak of altering the past? 

Neither question should be confused with the familiar 
subject of time's relativity. Newton believed the universe was 
pervaded by a single absolute time that could be symbolized 
by an imaginary clock off somewhere in space (perhaps out- 
side the cosmos). By means of this clock the rates of all the 
events in the universe could be measured. The notion works 
well within a single inertial frame of reference such as the 
surface of the earth, but it does not work for inertial systems 
moving in relation to each other at  high speeds. According to 
the theory of relativity, if a spaceship were to travel from our 
solar system to another solar system with a velocity close to 
that of light, events would proceed much slower on the space- 
ship than they would on the earth. In a sense, then, such a 
spaceship is traveling through time into the future. Passen- 
gers on the spaceship might experience a round-trip voyage 
as taking only a few years, but they would return to find that 
centu.ries of earth-years had elapsed. 

The notion that different parts of the universe can change 
at different rates of time is much older than the theory of rel- 
ativity. In the Scholastic theology of the Middle Ages angels 
were considered to be nonmaterial intelligences living by a 
time different from that of earthly creatures; God himself was 
thought to be entirely outside of time. In the first act of Lord 
Byron's play, Cain, A Mystery, the fallen angel Lucifer says: 

With us acts are exempt from time. 
and we 

Can crowd eternity into an hour 
Or stretch an hour into eternity 
We breathe not by a mortal 

measurement- 
But that's a mystery. 
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In the 20th century hundreds of science-fiction stories have 
played with the relativity of time in different inertial systems, 
but the view that time can speed up or slow down in different 
parts of our universe is central to many older tales. A popular 
medieval legend tells of a monk who is entranced for a minute 
or two by the song of a magical bird. When the bird stops 
singing, the monk discovers that several hundred years have 
passed. In a Moslem legend Mohammed is carried by a mare 
into the seventh heaven. After a long visit the prophet returns 
to the earth just in time to catch a jar of water the horse had 
kicked over before starting its ascent. 

Washington Irving's "Rip Van Winkle" is this country's 
best-known story about someone who sleeps for what seems 
to him to be a normal time while two decades of earth-years 
rush by. King Arthur's daughter Gyneth slept for 500 years 
under a spell cast by Merlin. Every culture has similar sleeper 
legends. H. G. Wells used the device in When the Sleeper Wakes, 
and it is a common practice in science fiction to put astro- 
nauts into a cryogenic sleep so they can survive interstellar 
voyages that are longer than their normal life span. In Wells's 
short story "The New Accelerator" a scientist discovers a way 
to speed up a person's biological time so that the world seems 
to come almost to a halt. This device too is frequently en- 
countered in later science fiction. 

The issue under consideration here, however, is not how 
time can vary but whether time can be said to stop entirely. 
It is clearly meaningful to speak of all motion ceasing in one 
part of the universe, whether or not such a part exists. In the 
theory of relativity the speed of light is an unattainable limit 
for any object with mass. If a spaceship could attain the speed 
of light (which the theory of relativity rules out because the 
mass of the ship would increase to infinity), then time on the 
spaceship would stop in the sense that all change on it would 
cease. In earth time it might take 100 years for the spaceship 
to reach a destination, but to astronauts on the spaceship the 
destination would be reached instantaneously. One can also 
imagine a piece of matter or even a human being reduced to 
such a low temperature (by some as  yet unknown means) that 
even all subatomic motions would be halted. For that piece 
of matter, then, one could say that time had stopped. Actually 
it is hard to understand why the piece of matter would not 
vanish. 

The idea of time stopping creates no problems for writers 
of fantasy, who are not constrained by the real world. For 



examlple, in L. Frank Baum's "The Capture of Father Time," 
one of the stories in his American Fairy Tales (now back in 
print in a Dover facsimile edition), a small boy lassoes Time, 
and for a while everything except the movements of the boy 
and Father Time stops completely. In Chapter 22 of James 
Branch Cabell's Jurgen: A Comedy of Justice, outside time 
sleeps while Jurgen enjoys a pleasurable stay in Cocaigne with 
Queein Anai'tis. Later in the novel Jurgen stares into the eyes 
of the God of his grandmother and is absolutely motionless 
for 35' days. In Jorge Luis Borges' story "The Secret Miracle" 
a writer is executed by a firing squad. Between the command 
to fire and the writer's death God stops all time outside the 
writer's brain, giving him a year to complete his masterpiece. 

Many similar examples from legend and literature show 
that the notion of time stopping in some part of the universe 
is not logically inconsistent. But what about the idea of time 
stopping throughout the universe? Does the notion that every- 
thing stops moving for a while and then starts again have any 
meaning? 

If it is assumed that there is an outside observer-per- 
haps a god-watching the universe from a region of hyper- 
time, then of course the notion of time stopping does have 
meaning, just as imagining a god in hyperspace gives meaning 
to the notion of everything in the universe turning upside down. 
The history of our universe may be like a three-dimensional 
motioln picture a god is enjoying. When the god turns off the 
proje~ctor to do something else, a few millenniums may go by 
before he comes back and turns it on again. (After all, what 
are a few millenniums to a god?) For all we can know a billion 
centuries of hypertime may have elapsed between my typing 
the first and the second word of this sentence. 

Suppose, however, all outside observers are ruled out and 
"universe" is taken to mean "everything there is." Is there still 
a way to give a meaning to the idea of all change stopping for 
a while? Although most philosophers and scientists would say 
there is not, a few have argued for the other side. For ex- 
ample, in "Time without Change" Sydney S. Shoemaker, now 
a philosopher at Cornell University, makes an unusual argu- 
ment in support of the possibility of change stopping. 

Slhoemaker is concerned not with the real world but with 
possible worlds designed to prove that the notion of time 
stoppling everywhere can be given a reasonable meaning. He 
proposes several worlds of this kind, all of them based on the 



same idea. I shall describe only one such world here, in a 
slightly dramatized form. 

Imagine a universe divided into regions A, B and C. In 
normal times inhabitants of each region can observe the in- 
habitants of the other two and communicate with them. Every 
now and then, however, a mysterious purple glow permeates 
one of the regions. The glow always lasts for a week and is 
invariably followed by a year in which all change in the region 
ceases. In other words, for one year absolutely nothing hap- 
pens there. Shoemaker calls the phenomenon a local freeze. 
Since no events take place, light cannot leave the region, and 
so the region seems to vanish for a year. When it returns to 
view, its inhabitants are unaware of any passage of time, but 
they learn from their neighbors that a year, as measured by 
clocks in the other two regions, has elapsed. To the inhabi- 
tants of the region that experienced the local freeze it seems 
that instantaneous changes have taken place in the other two 
regions. As Shoemaker puts it: "People and objects will ap- 
pear to have moved in a discontinuous manner or to have van- 
ished into thin air or to have materialized out of thin air; sa- 
plings will appear to have grown instantaneously into mature 
trees, and so on." 

In the history of each of the three regions local freezes, 
invariably preceded by a week of purple light, have happened 
thousands of times. Now suppose that suddenly, for the first 
time in history, purple light appears simultaneously in re- 
gions A, B and C and lasts for a week. Would it not be rea- 
sonable, Shoemaker asks, for scientists in the three regions 
to conclude that change had ceased for a year throughout the 
entire universe even though no minds were aware of it? 

Shoemaker considers several objections to his thesis and 
counters all of them ingeniously. Interested readers can con- 
sult his paper and then read a technical analysis of it in the 
fifth chapter of G. Schlesinger's Confirmation and Confirma- 
bility. Schlesinger agrees with Shoemaker that an empirical, 
logically consistent meaning can be found for the sentence "A 
period of time t has passed during which absolutely nothing 
happened." Note that similar arguments about possible worlds 
can provide meanings for such notions as everything in a uni- 
verse turning upside down, mirror-reversing, doubling in size 
and so on. 

The question of whether the past can be changed is even 
stranger than that of whether time can stop. Writers have often 
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speculated about what might have happened if the past had 
taken a different turn. J. B. Priestley's play Dangerous Corner 
dealt with this question, and there have been innumerable 
"what if" stories in both science fiction and other kinds of 
literature. In all time-travel stories where someone enters the 
past, the past is necessarily altered. The only way the logical 
contradictions created by such a premise can be resolved is 
by posi1:ing a universe that splits into separate branches the 
instant the past is entered. In other words, while time in the 
old branch "gurgles on" (a phrase from Emily Dickinson) time 
in the new branch gurgles on in a different way toward a dif- 
ferent future. When I speak of altering the past, however, I 
mean altering it throughout a single universe with no forking 
time paths. (Pseudoalterations of the past, such as the rewrit- 
ing of history satirized by George Orwell in 1984, obviously 
do not qualify.) Given this context, can an event, once it has 
happened, ever be made not to have happened? 

The question is older than Aristotle, who in his Ethics 
(Book 6) writes: "It is to be noted that nothing that is past is 
an object of choice, for example, no one chooses to have sacked 
Troy; for no one deliberates about the past, but about what is 
future and capable of being otherwise, while what is past is 
not capable of not having taken place; hence Agathon is right 
in saying: 'For this alone is lacking even to God, to make un- 
done things that have once been done.' " 

Thomas Aquinas believed God to be outside of time and 
thus capable of seeing all his creation's past and future in one 
blinding instant. (Even though human beings have genuine 
power of choice, God knows how each one will choose; it is 
in this way that Aquinas sought to harmonize predestination 
and free will.) For Aquinas it was not possible for God to do 
absolutely impossible things, namely those that involve logi- 
cal contradiction. For example, God could not make a crea- 
ture that was both a human being and a horse (that is, a com- 
plete huinan being and a complete horse, rather than a mythical 
combination of parts such as a centaur), because that would 
involve Ithe contradiction of assuming a creature to be simul- 
taneously rational and nonrational. 

Similarly, God cannot alter the past. That would be the 
same as asserting that the sack of Troy both took place and 
did not take place. Aquinas agreed with Aristotle that the past 
must forever be what it was, and it was this view that became 
the official position of medieval Scholasticism. It is not so much 



that God's omnipotence is limited by the law of contradiction 
but rather that the law is part of God's nature. "It is best to 
say," Aquinas wrote, "that what involves contradiction cannot 
be done rather than that God cannot do it." Modern philoso- 
phers would say it this way. God can't make a four-sided tri- 
angle, not because he can't make objects with four sides but 
because a triangle is defined as a three-sided polygon. The 
phrase "four-sided triangle" is therefore a nonsense phrase, 
one without meaning. 

Edwyn Bevan, in a discussion of time in his book Sym- 
bolism and Belief, finds it odd that Aquinas would deny God 
the ability to alter the past and at the same time allow God to 
alter the future. In the 10th question of Summa Theologica 
(Ia. 10, article 5.3), Aquinas wrote: "God can cause an angel 
not to exist in the future, even if he cannot cause it not to 
exist while it exists, or not to have existed when it already 
has." For Aquinas to have suggested that for God the past is 
unalterable and the future is not unalterable, Bevan reasons, 
is surely to place God in some kind of time, thus contradict- 
ing the assertion that God is outside of time. 

I know of no scientist or secular philosopher who has se- 
riously believed the past could be altered, but a small minor- 
ity of theologians have maintained that it could be. The great- 
est of them was Peter Damian, the zealous Italian reformer of 
the Roman Catholic church in the 1 l th  century. In On Divine 
Omnipotence, his most controversial treatise, Damian argued 
that God is in no way bound by the law of contradiction, that 
his omnipotence gives him the power to do all contradictory 
things including changing the past. Although Damian, who 
started out as a hermit monk, argued his extreme views skill- 
fully, he regarded all reasoning as superfluous, useful only for 
supporting revealed theology. It appears that he, like Lewis 
Carroll's White Queen, would have defended everyone's right 
to believe six impossible things before breakfast. (Damian was 
also a great promoter of self-flagellation as a form of penance, 
a practice that became such a fad during his lifetime that some 
monks flogged themselves to death.) 

One of my favorite Lord Dunsany stories is the best ex- 
ample I know of from the literature of fantasy that illustrates 
Damian's belief in the possibility of altering the past. I t  is 
titled "The King That Was Not," and you will find it in Dun- 
sany's early book of wonder tales Time and the Gods. It begins 
as follows: "The land of Runazar hath no King nor ever had 
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one; a.nd this is the law of the land of Runazar that, seeing 
that it. hath never had a King, it shall not have one for ever. 
Therefore in Runazar the priests hold sway, who tell the peo- 
ple that never in Runazar hath there been a King." 

The start of the second paragraph is surprising: "Altha- 
zar, King of Runazar. . . ." The story goes on to recount how 
A1tha;sar ordered his sculptors to carve marble statues of the 
gods. His command was obeyed, but when the great statues 
were undraped, their faces were very much like the face of 
the king. Althazar was pleased and rewarded his sculptors 
handsomely with gold, but up in Peggna (Dunsany's Mount 
Olympus) the gods were outraged. One of them, Mung, leaned 
forward to make his sign against Althazar, but the other gods 
stopped him: "Slay him not, for it is not enough that Althazar 
shall die, who hath made the faces of the gods to be like the 
faces of men, but he must not even have ever been." 

"Spake we of  Althazar, a King?" 
asked one of the gods. 

"Nay, we spake not. " 
"Dreamed we of one Althazar?" 
"Nay, we dreamed not." 

Below Pegana, in the royal palace, Althazar suddenly 
passed out of the memory of the gods and so "became no longer 
a thing that was or had ever been." When the priests and the 
people entered the throne room, they found only a robe and a 
crown. "The gods have cast away the fragment of a garment," 
said the priests, "and lo! from the fingers of the gods hath 
slipped one little ring." 

When I wrote about time stopping I was using a colloquial 
expression to mean that change ceases. Because there are no 
moving "clocks" of any sort for measuring time, one can say 
in a loose sense that time stops. Of course time does not move 
or stop any more than length can extend or not extend. It is 
the universe that moves. You can refute the notion that time 
"flows" like a river simply by asking: "At what rate does it 
flow?" Shoemaker wanted to show in his paper not that time 
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stops, then starts again, but that all change can stop and some 
sort of transcendental hypertime still persists. Change re- 
quires time, but perhaps, Shoemaker argued, time does not 
require change in our universe. 

Harold A. Segal, in a letter in the New York Times (Jan- 
uary 1 1, 1987) quoted a marvelous passage from Shake- 
speare's As You Like It (Act 111, Scene 2) in which Rosalind 
explains how time can amble, trot, gallop, or stand still for 
different persons in different circumstances. It trots for the 
"young maid" between her engagement and marriage. It am- 
bles for a priest who knows no Latin because he is free from 
the burden of "wasteful learning." It ambles for the rich man 
in good health who "lives merrily because he feels no pain." 
It gallops for the thief who awaits his hanging. For whom does 
it stand still? "With lawyers in the vacation; for they sleep 
between term and term, and then they perceive not how Time 
moves." 

Isaac Asimov, in an editorial in Asimov's Science-Fiction 
Magazine (June, 1986) explained why it would not be possible 
for a person to walk about and observe a world in which all 
change had stopped. To move, she would have to push aside 
molecules, and this would inject time into the outside world. 
She would be as frozen as  the universe, even though dancing 
atoms in her brain might continue to let her think. Asimov 
could have added that she would not even be able to see the 
world because sight depends on photons speeding from the 
world into one's eyes. 

Two readers, Edward Adams and Henry Lambert, inde- 
pendently wrote to say that the god Koschei, in Jurgen, could 
alter the past. At the end of the novel he eliminates all of 
Jurgen's adventures as never having happened. However, 
Jurgen recalls that Horvendile (the name Cabell often used 
for himself) once told him that he (Horvendile) and Koschei 
were one and the same! 

Edward Fredkin is a computer scientist who likes to think 
of the universe as a vast cellular automaton run by an incon- 
ceivably complex algorithm that tells the universe how to jump 
constantly from one state to the next. Whoever or whatever is 
running the program could, of course, shut it down at any time, 
then later start it running again. We who are part of the pro- 
gram would have no awareness of such gaps in time. 

On the unalterability of the past, readers reminded me of 
the stanza in Omar's Rubaiyat about the moving finger that 



having writ moves on, and all our piety and wit cannot call it 
back to cancel half a line. Or as Ogden Nash once put it: 

One thing about the past. 
It's likely to last. 

I touched only briefly on the many science-fiction stories 
and novels that deal with time slowing down or halting. For 
references on some of the major tales see the section "When 
time stands still" on page 153 of The Visual Encyclopedia of 
Science Fiction. The most startling possibility, now seriously 
advanced by some physicists, is that the universe comes to a 
complete stop billions of times every microsecond, then starts 
up again. Like a cellular automaton it jumps from state to 
state. Between the jumps, nothing changes. The universe 
simply does not exist. Time is quantized. An electron doesn't 
move smoothly from here to there. It moves in tiny jumps, 
occupying no space in between. 

The fundamental unit of quantized time has been called 
the "chronon." Between chronons one can imagine one or more 
parallel universes operating within our space, but totally un- 
known to us. Think of a film with two unrelated motion pic- 
tures running on alternate frames. Between the frames of our 
universe, who knows what other exotic worlds are unrolling 
in the intervals between our chronons? Both motion pictures 
and cellular automata are deterministic, but in this vision of 
parallel universes running in the same space, there is no need 
to assume determinism. Chance and free will could still play 
creative roles in making the future of each universe unpre- 
dictable in principle. 
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1. d Ticktacktoe Genera Ize 

T he world's simplest, oldest and most popular pencil-and-pa- 
per ga:me is still ticktacktoe, and combinatorial mathemati- 
cians, often with the aid of computers, continue to explore 
unusual variations and generalizations of it. In one variant 
that goes back to ancient times the two players are each given 
three counters, and they take turns first placing them on the 
three-by-three board and then moving them from cell to cell 
until one player gets his three counters in a row. (I discuss 
this gaime in my Scientific American Book of Mathematical Games 
and Diversions.) Moving-counter ticktacktoe is the basis for a 
number of modern commercial games, such as  John Scarne's 
Teeko and a new game called Touche, in which concealed 
magnets cause counters to flip over and become opponent 
pieces.. 
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Standard ticktacktoe can obviously be generalized to larger 
fields. For example, the old Japanese game of go-moku ("five 
stones") is essentially five-in-a-row ticktacktoe played on a go 
board. Another way to generalize the game is to play it on 
"boards" of three or more dimensions. These variants and oth- 
ers are discussed in my Wheels, Life book. 

In March, 1977, Frank Harary devised a delightful new 
way to generalize ticktacktoe. Harary was then a mathemati- 
cian a t  the University of Michigan. He is now the Distin- 
guished Professor of Computer Science at New Mexico State 
University, in Las Cruces. He has been called Mr. Graph 
Theory because of his tireless, pioneering work in this rapidly 
growing field that is partly combinatorial and partly topologi- 
cal. Harary is the founder of the Journal of Combinatorial 
Theory and the Journal of Graph Theory, and the author of 
Graph Theory, considered the world over to be the definitive 
textbook on the subject. His papers on graph theory, written 
alone or in collaboration with others, number more than 500. 
Harary ticktacktoe, as I originally called his generalization of 
the game, opens up numerous fascinating areas of recrea- 
tional mathematics. Acting on his emphatic request, I now 
call it animal ticktacktoe for reasons we shall see below. 

We begin by observing that standard ticktacktoe can be 
viewed as a two-color geometric-graph game of the type Har- 
ary calls an achievement game. Replace the nine cells of the 
ticktacktoe board with nine points joined by lines, as is shown 
in Figure 90. The players are each assigned a color, and they 
take turns coloring points on the graph. The first player to 
complete a straight line of three points in his color wins. This 
game is clearly isomorphic with standard ticktacktoe. It is 
well known to end in a draw if both players make the best 
possible moves. 

Let us now ask: What is the smallest square on which the 
first player can force a win by coloring a straight (non-diago- 
nal) three-point path? It is easy to show that it is a square of 
side four. Harary calls this side length the board number b of 
the game. It  is closely related to the Ramsey number of gen- 
eralized Ramsey graph theory, a number that plays an impor- 
tant part in the Ramsey games. (Ramsey theory is a field in 
which Harary has made notable contributions. It was in a 1972 
survey paper on Ramsey theory that Harary first proposed 
making a general study of games played on graphs by coloring 
the graph edges.) Once we have determined the value of b we 



FIGURE 90 Ticktacktoe as a two-coloring game 

can ask a second question. In how few moves can the first 
player win? A little doodling shows that on a board of side 
four the first player can force a win in only three moves. Har- 
ary calls this the move number m of the game. 

In ticktacktoe a player wins by taking cells that form a 
straight, order-3 polyomino that is either edge- or corner-con- 
nectedl. (The corner-connected figure corresponds to taking 
three cells on a diagonal.) Polyominoes of orders 1 through 5 
are depicted in Figures 91 and 92. The polyomino terminol- 
ogy was coined by Solomon W. Golomb, who was the first to 
make ;3 detailed study of these figures. Harary prefers to fol- 
low th~e usage of a number of early papers on the subject and 
call them "animals." I shall follow that practice here. 

We are now prepared to explain Harary's fortuitous gen- 
eraliza~tion. Choose an animal of any order (number of square 
cells) ;and declare its formation to be the objective of a tick- 
tacktoselike game. As in ticktacktoe we shall play not by 
coloring spots on a graph but by marking cells on square ma- 
trixes with noughts and crosses in the usual manner or by 
coloring cells red and green as one colors edges in a Ramsey 
graph game. Each player tries to label or color cells that will 
form tlhe desired animal. The animal will be accepted in any 
orientation and, if it is asymmetrical, in either of its mirror- 
image forms. 
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FIGURE 91 Animals of 1 cell through 4 cells 

Our first task is to determine the animal's board number, 
that is, the length of the side of the smallest square on which 
the first player can, by playing the best possible strategy, force 
a win. If such a number exists, the animal is called a winner, 
and it will be a winner on all larger square fields. If there is 
no board number, the animal is called a loser. If the animal 
chosen as the objective of a game is a loser, the second player 
can always force a draw, but he can never force a win. The 
clever proof of this fact is well known and applies to most 
ticktacktoelike games. Assume that the second player has a 
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FIGURE 92 The 12 animals of 5 cells 



winning strategy. The first player can "steal" the strategy by 
first making an irrelevant opening move (which can never be 
a liability) and thereafter playing the winning strategy. This 
finding contradicts the assumption that the second player has 
a winning strategy, and so that assumption must be false. 
Hence the second player can never force a win. If the animal 
is a winner and b is known, we next seek m, the minimum 
number of moves in which the game can be won. 

For the 1-cell animal (the monomino), which is trivially a 
winner, b and m are both equal to 1. When, as in this case, m 
is equal to the number of cells in the animal, Harary calls the 
game economical, because a player can win it without having 
to take any cell that is not part of the animal. The game in 
which the objective is the only 2-cell animal (the domino) is 
almost as trivial. It is also economical, with b and m both 
equal to 2. The games played with the two 3-cell animals (the 
trominoes) are slightly more difficult to analyze, but the reader 
can easily demonstrate that both are economical: for the L- 
shaped 3-cell animal b and m are both equal to 3, and for the 
straight 3-cell animal b equals 4 and m equals 3. This last 
game is identical with standard ticktacktoe except that cor- 
ner-connected, or diagonal, rows of three cells are not counted 
as wins. 

It  is when we turn to the 4-cell animals (the tetrominoes) 
that the project really becomes interesting. Harary has given 
each of the five order-4 animals names, as is shown in Figure 
9 1. Readers may enjoy proving that the b and m numbers given 
in the illustration are correct. Note that Fatty (the square te- 
tromino) has no such numbers and so is labeled a loser. It was 
Andreas R. Blass, one of Harary's colleagues at Michigan, who 
proved that the first player cannot force Fatty on a field of 
any size, even on the infinite lattice. Blass's result was the 
first surprise of the investigation into animal ticktacktoe. From 
this finding it follows at once that any larger animal contain- 
ing a two-by-two square also is a loser: the second player sim- 
ply plays to prevent Fatty's formation. More generally, any 
animal that contains a loser of a lower order is itself a loser. 
Harary calls a loser that contains no loser of lower order a 
basic loser. Fatty is the smallest basic loser. 

The proof that Fatty is a minimal loser is so simple and 
elegant that it can be explained quickly. Imagine the infinite 
plane tiled with dominoes in the manner shown a t  the top of 
Figure 93. If Fatty is drawn anywhere on this tiling, it must 



FIGURE 93 Tiling patterns (left) for the 12 basic losers (right) 

contain a domino. Hence the second player's strategy is sim- 
ply to1 respond to each of his opponent's moves by taking the 
other cell of the same domino. As a result the first player will 
never be able to complete a domino, and so he will never be 
able to complete a Fatty. If an animal is a loser on the infinite 
board, it is a loser on all finite boards. Therefore Fatty is al- 
ways a loser regardless of the board size. 

E.arly in 1978 Harary and his colleagues, working with 
only the top four domino tilings shown in Figure 93 estab- 
lishecl that all but three of the 12 5-cell animals are losers. 
Among the nine losers only the one containing Fatty is not a 
basic loser. Turning to the 35 6-cell animals, all but four con- 



tain basic losers of lower order. Of the remaining four pos- 
sible winners three can be proved losers with one of the five 
tilings shown in the illustration. The animals that can be proved 
basic losers with each tiling pattern are shown alongside the 
pattern. In every case the proof is the same: it is impossible 
to draw the loser on the associated tiling pattern (which is 
assumed to be infinite) without including a domino; therefore 
the second player can always prevent the first player from 
forming the animal by following the strategy already de- 
scribed for blocking Fatty. There are a total of 12 basic losers 
of order six or lower. 

It is worth noting how the tiling proof that the straight 
animal of five cells is a loser (another proof that was first found 
by Blass) bears on the game of go-moku. If the game is limited 
to an objective of five adjacent cells in a horizontal or vertical 
line (eliminating wins by diagonal lines), the second player 
can always force a draw. When diagonal wins are allowed, the 
game is believed to be a first-player win, although as far as I 
know that has not yet been proved even for fields larger than 
the go board. 

The only 6-cell animal that may be a winner is the one 
that I named Snaky: 

Generalized Ticktacktoe 

Although they have not yet been able to prove this animal is 
a winner, they conjecture its board number, if any, is no larger 
than 15 and its move number is no larger than 13. This asser- 
tion is the outstanding unsolved problem in animal ticktack- 
toe theory. Perhaps a reader can prove Snaky is a loser or 
conversely show how the first player can force the animal on 
a square field and determine its board and move numbers. 

All the 107 order-7 animals are known to be losers be- 
cause each contains a basic loser. Therefore since every higher- 
order animal must contain an order-7 animal, it can be said 
with confidence that there are no winners beyond order 6. If 
Snaky is a winner, as Harary and his former doctoral student 
Geoffrey Exoo conjecture, there are, by coincidence, exactly 
a dozen winners-half of them economical-and a dozen basic 
losers. 
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Any 4- or 5-cell animal can be the basis of a pleasant pen- 
cil-and-paper game or a board game. If both players know the 
full analysis, then depending on the animal chosen either the 
first player will win or the second player will force a draw. 
As in ticktacktoe between inexpert players, however, if this 
knowledge is lacking, the game can be entertaining. If the 
animarl chosen as the objective of the game is a winner, the 
game is best played on a board of side b  or b -  1. (Remember 
that al square of side b -  1 is the largest board on which the 
first pllayer cannot force a win.) 

All the variations and generalizations of animal ticktack- 
toe that have been considered so far are, as  Harary once put 
it, "Ramseyish." For example, one can play the misere, or re- 
verse, form of any game-in Harary's terminology an avoid- 
ance game-in which a player wins by forcing his opponent 
to color the chosen animal. 

Avoidance games are unusually difficult to analyze. The 
second player trivially wins if the animal to be avoided is the 
mono~mino. If the domino is to be avoided, the second player 
obvioiusly wins on the 2 x 2 square, and almost as  obviously 
on the 2 x 3 rectangle. 

On a square board of any size the first player can be forced 
to cornplete the L-shaped 3-cell animal. Obviously the length 
of the square's side must be at  least 3 for the game to be 
meaningful. If the length of the side is odd, the second player 
will win if he follows each of his opponent's moves by taking 
the cell symmetrically opposite the move with respect to the 
center of the board. If the first player avoids taking the cen- 
ter, he will be forced to take it on his last move and so will 
lose. [f he takes it earlier in the game without losing, the sec- 
ond player should follow with any safe move. If the first player 
then takes the cell that is symmetrically opposite the second 
player's move with respect to the center, the second player 
should again make a harmless move, and so on; otherwise he 
should revert to his former strategy. If the length of the square's 
side is even, this type of symmetrical play leads to a draw, 
but the second player can still win by applying more compli- 
cated tactics. 

Oln square boards the straight 3-cell animal cannot be 
forced on the first player. The proof of this fact is a bit diffi- 
cult, even for the three-by-three square, but as a result no 
larger animal containing the straight 3-cell species can be 
forced on any square board. (The situation is analogous to that 
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of basic losers in animal-achievement games.) Hence among 
the 4-cell animals only Fatty and Tippy remain ds possible 
nondraws. Fatty can be shown to be a draw on any square 
board, but Tippy can be forced on the first player on all square 
boards of odd side. The complete analysis of all animal-avoid- 
ance games is still in the early stages and appears to present 
difficult problems. 

Harary has proposed many other nontrivial variants of the 
basic animal games. For example, the objective of a game can 
be two or more different animals. In this case the first player 
can try to form one animal and the second player the other, 
or both players can try to form either one. In addition, 
achievement and avoidance can be combined in the same game, 
and nonrectangular boards can be used. It  is possible to in- 
clude three or more players in any game, but this twist intro- 
duces coalition play and leads to enormous complexities. The 
rules can also be revised to accept corner-connected animals 
or animals that are both edge- and corner-connected. At the 
limit, of course, one could make any pattern whatsoever the 
objective of a ticktacktoelike game, but such broad generali- 
zations usually lead to games that are too complicated to be 
interesting. 

Another way of generalizing these games is to play them 
with polyiamonds (identical edge-joined equilateral triangles) 
or polyhexes (identical edge-joined regular hexagons) respec- 
tively on a regular triangular field or a regular hexagonal field. 
One could also investigate games played with these animals 
on less regular fields. An initial investigation of triangular 
forms, by Harary and Heiko Harborth, is listed in the bibli- 
ography. 

The games played with square animals can obviously be 
extended to boards of three or more dimensions. For ex- 
ample, the 3-space analogue of the polyomino is the polycube: 
n unit cubes joined along faces. Given a polycube, one could 
seek b and m numbers based on the smallest cubical lattice 
within which the first player can force a win and try to find 
all the polycubes that are basic losers. This generalization is 
almost totally unexplored, but see the bibliography for a pa- 
per on the topic by Harary and Michael Weisbach. 

As I have mentioned, Blass, now at Pennsylvania Univer- 
sity, is one of Harary's main collaborators. The others include 
Exoo, A. Kabell and Heiko Harborth, who is investigating 
games with the triangular and hexagonal cousins of the square 



animals. Harary is still planning a book on achievement and 
avoidance games in which all these generalizations of tick- 
tacktoe and many other closely related games will be ex- 
plored, and he is also persuading his current computer sci- 
ence students to develop computer programs for playing these 
games both offensively and defensively. This is the area of A1 
(artificial intelligence) known as game-playing programs. 

In giving the proof that a second player cannot have the win 
in most ticktacktoe-like games, I said that if the first player 
always wins on a board of a certain size, he also wins on any 
larger board. This is true of the square boards with which 
Harairy was concerned, but is not necessarily true when such 
games are played on arbitrary graphs. A. K. Austin and C. J. 
Knight, mathematicians at  the University of Sheffield, in 
England, sent the following counterexample. 

Clonsider the graph at the left of Figure 94, on which three- 
in-a-row wins. The first player wins by taking A. The second 
player has a choice of taking a point in either the small or the 
large triangle. Whichever he chooses, the first player takes a 
corner point in the other triangle. The opponent must block 
the threatened win, then a play in the remaining corner of the 
same triangle forces a win. 

FIGURE 94 First player wins on graph at left, but second player 
can force a draw on enlarged graph at right 
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Now enlarge the "board" by adding two points as shown 
on the right in Figure 94. The second player can draw by 
playing at B. If the first player does not start with A ,  the sec- 
ond player draws by taking A .  

Achievement and avoidance games played on graphs ob- 
viously open up endless possibilities that will be explored in 
Harary's forthcoming book. 
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~ s ~ c h i c  wonders and 
proLabi1ity 

C onjuring is the art of entertaining people by doing things that 
seem1 to violate natural laws. A woman levitates. An elephant 

=vanishes. Doves materialize. Spoons bend when stroked with 
a finger. And so on. 

il small branch of magic, much in the news these days 
because of public enthusiasm for self-styled psychics, is con- 
cerned not with doing the impossible but only with doing 
something extremely improbable. Feats of this kind usually 
call on things that serve as randomizers in games of chance, 
such as  a deck of cards or a pair of dice, so that there is an 
understandable overlap between the methods followed by 
psychic charlatans and those followed by gambling hustlers 
and honest charlatans (magicians). 

A full account of magic and probability would involve a 
mulf.ivolume discussion of ways of controlling dice, cards, 
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flipped coins, roulette wheels, bingo and other games of chance, 
and of "gaffing" carnival games. In all these areas there are 
cheating stratagems of incredible ingenuity. As an example, 
a vertically spinning carnival wheel can be gaffed with the aid 
of a loose floorboard. One end of the board presses upward 
against the bottom of a vertical board that runs behind the 
wheel and that has a a hole in it through which the rotating 
axle of the wheel extends. The carnival operator stands at  the 
side of his booth opposite the wheel. By shifting his weight 
imperceptibly from one leg to the other, he can manipulate 
the loose board as a long lever and can push the vertical board 
up to put friction on the axle. The beauty of this particular 
gaff is that no one can prove that it is intentional even if the 
entire booth is torn apart. 

In this chapter I shall skim briefly over a few of the 
hundreds of ways in which fake psychics can boost their odds 
when they work with playing cards or ESP cards. Today any 
sincere parapsychologist would make certain that a subject 
does not see or handle the cards, but in the early days of 
parapsychology, when the most sensational results were ob- 
tained, such controls were often not imposed. Even today in 
informal testing and in public demonstrations by dishonest 
psychics the ESP cards are sometimes in full view. 

What can a clever psychic do to raise his scores above 
chance levels? One method is to secretly mark some of the 
cards in the course of handling them during preliminary tests. 
There are many ways of doing it. Card hustlers often resort 
to what in the trade is known as daub, a waxy substance that 
can be put on the back of a coat button for easy access to a 
fingertip. It leaves on the border of the card an extremely faint 
smudge indistinguishable from the smudges cards acquire in 
ordinary handling. Another method is to put a tiny nick on 
the edge of the card with a fingernail. A third method is to 
scrape a thumbnail about an eighth of an inch along the edge 
to produce a whitish line. It is only necessary to mark a few 
cards in order to raise a score to significant levels. 

Sometimes it is not even necessary to mark cards to rec- 
ognize them from the back. After playing cards or ESP cards 
have been used they tend to acquire all kinds of minute im- 
perfections: a dirt mark, a slightly bent corner and so on. That 
is why in professional card games new decks are constantly 
being produced. Suppose a sharp-eyed poker player notices 
that the king of hearts has a tiny speck of dirt at one corner. 



If in a game of stud poker he sees the speck on an opponent's 
hole card, is he cheating or just being alert? 

It is not generally known, even by magicians, that the of- 
ficial ESP cards now in use (authorized by J. B. Rhine) have 
what card magicians call "one-way backs." This means that if 
you examine the backs carefully, you will find they are not 
the same when the card is rotated 180 degrees. For example, 
the upper right-hand corner of the back of an ESP card either 
has a star there or it does not. In the course of a trial run 
there are many ways a psychic can set a 25-card deck so that 
all it.s cards are "one way." For example, he will try to guess 
only the cards that are turned one way and will not try on all 
the olthers. The unguessed cards are dealt to a separate pile. 
After the test (on which he is likely to score at the level of 
random chance) one pile is turned around before the pack is 
reassembled. The cards are now all one way, and the psychic 
is ready to perform miracles. 

The literature of card magic is filled with clever tricks 
based on the one-way principle. A psychic may spread the 
cards on a table, turn his back and ask someone near the left 
end of the table to draw a card. That person is then told to 
hand the card to someone near the right end of the table to 
verify the symbol. The second person then returns the card 
to th.e spread and gives the deck a shuffle. This maneuver 
nearlly always reverses the card. (There are many other subtle 
procedures for causing one or more chosen cards to become 
reversed in a one-way deck.) The cards are then dealt in a 
row. The psychic turns around, and moving his hand slowly 
down the row to "feel the vibes," he easily locates the chosen 
card.. The card is turned face up by rotating it end for end and 
is then replaced in the row by turning it face down from side 
to side, so that the cards are one way again. 

I:t is not necessary to have the ESP deck all one way to 
perform similar feats. Suppose the deck is random with re- 
spect to its back patterns and that you are the psychic. Have 
five (cards dealt in a row. Simply memorize the pattern as a 
binairy number, say 11010. Follow the above strategy for hav- 
ing il card selected and returned to the row while your back 
is turned. You can find the card easily, and you can memorize 
the new binary pattern and repeat the performance as  often 
as you like. 

14 standard deck of 25 ESP cards has five cards for each 
symbol: a star, a cross, a circle, wavy lines and a square. It 



is only necessary to have the 10 cards for two symbols one 
way and the 15 cards for the other three sy~nbols the other 
way to make an impressive score in guessing each symbol as 
someone deals the shuffled pack face down. For an unpre- 
pared deck the expected score is five hits, assuming there is 
no feedback information about the cards until the dealing is 
completed. With two symbols set one way you have a chance 
of 112 of guessing correctly between the two. This is an ex- 
pectation of 1012, or five, hits. You have a 113 chance of 
guessing correctly on the other three symbols, which is an 
expectation of 1513, or again five, hits. The total expectation 
is five plus five, or 10, hits for the run of 25 cards. If the run 
is repeated four times, for the standard four-run test you can 
expect 40 hits out of 100. Parapsychologists regard a score of 
30 as indicating excellent ESP, and so a score of 40 is sen- 
sational. I t  is much more impressive than a perfect score, 
which would strongly suggest cheating. Note the curious fact 
that if only one symbol is marked, your expectation is still 40 
hits in a run of 100. That, however, requires always guessing 
one symbol correctly, which would be noticed on score sheets 
and give the game away. 

If the cards are not visible to the psychic in a test, a com- 
mon method of cheating is to rely on what magicians call a 
"stooge": someone who is watching behind a screen and send- 
ing secret signals to the psychic by any one of scores of little- 
known techniques. (One of the hardest to detect involves the 
electronic sending of pulses that the psychic receives by means 
of a tiny device inserted in the anus. Few examinations of 
psychics take this possibility into account.) 

The use of secret stooges is common in the history of 
psychic phenomena. Almost all "mind reading" animals, which 
in the past included famous vaudeville horses, dogs and even 
pigs (see Figure 95) rely on secret sound signals that can be 
picked up easily by species with large ears and a sense of 
hearing better than man's. For example, the trainer has a 
playing card selected and learns the card by standard magic 
methods. The animal then "checks" each of 52 cards spread 
in a large circle on the floor or displayed on a long easel. When 
it comes to the right card it paws it, noses it or picks it up in 
its mouth. The card is of course cued by a signal only the 
animal can hear. It may be almost anything, from a faint sniff- 
ing sound to the clicking of one fingernail against another by 
a hand held in a pocket or behind the back. The signaler need 
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FIGURE 95 A mind-reading pig is advertised in this poster in the 
collection of Milbourne Christopher 



not be the person on stage; it can be someone sitting in the 
first row. 

The trained animal can also pick alphabet cards to spell 
a word or numbered cards that display the solution to a math- 
ematical problem called out by a spectator. Many old books 
go into great detail on how to train animals for such acts. One 
of the best is Haney's Art o f  Training Animals (Jesse Haney & 
Co., Publisher, 1869), which recommends fingernail signal- 
ing. Another is The Expositor: Or Many Mysteries Unravelled, 
by William Frederick Pinchbeck (privately published, 1805). 
It has an excellent section on training mind-reading pigs by 
the sniffing-sound method. 

When J. B. Rhine was a young man he was completely 
taken in by Lady Wonder, a mind-reading horse in Virginia 
whose psi abilities he and his wife enthusiastically described 
in The  Journal of  Abnormal and Social Psychology (Vol. 23, 
1929, pp. 449-466). A more sophisticated Rhine later re- 
peated his tests with Lady Wonder and found that her trainer 
was signaling. Until his death Rhine contended that Lady 
Wonder did have genuine extrasensory perception but that after 
she had lost it her owner began signaling to her in secret. 
(For details see my Fads and Fallacies i n  the Name o f  Science, 
a Dover paperback, pages 35 1-352.) 

It is usually impossible to know whether or not stooges 
were present by reading a parapsychologist's official report of 
an experiment. If you go over the papers by Harold E. Puthoff 
and Russell Targ that recount their clairvoyance tests of the 
Israeli magician Uri Geller at  the time he was visiting the 
Stanford Research Institute, you will find no hint that Geller's 
best friend, Shipi Strang, was always present during the tests. 
When this fact came out, Puthoff and Targ agreed that he was 
there, but they wrote that Strang was carefully "excluded from 
the target area." By this they meant that he was not in the 
room where the randomly selected target pictures were being 
"sent" to Uri. But Strang, it turns out, was unattended and 
moving around freely, and there are many ways he could have 
learned of the targets and signaled them. The contrast be- 
tween the elliptical, sanitized reports of the experiments and 
the chaotic conditions that actually prevailed, as described in 
John Wilhelm's The Search for Superman (Pocket Books, 19761, 
and James Randi's The Magic o f  Uri  Geller (Ballantine Books, 
1976), is startling. That Strang often stooged for Geller is well 



established, having been described by Strang's sister in an 
interview she gave an Israeli reporter and also by Geller's 
former manager, Yasha Katz, in an Italian television inter- 
view in 1979. 

If a psychic is guessing ESP cards that are concealed from 
him, the cards do not have to be marked or turned one way 
for a stooge to send valuable information. It is only necessary 
for the stooge to signal the symbol after the card is turned to 
enable the psychic to score well above chance. With complete 
information about each card after the guess has been made a 
psychic who adopts his best strategy can raise his expected 
score on 25 cards from five to 8.65. (See Ronald C. Read's 
article listed in the bibliography.) 

If the feedback is no more than whether the psychic made 
a hit or a miss, it allows a strategy capable of producing an 
expected score of 6.63 hits. (See the paper by Persi Dia- 
conis). In many classic tests of ESP it is impossible to tell 
from published reports whether a subject was given any kind 
of feedback or whether friends of the subject were present 
who could have sent feedback by secret signaling. 

In most card games, feedback from dealt cards gives 
valuable information to a skilled player. That this is the case 
in stud poker and bridge is obvious. In the casino game of 
black.jack, or twenty-one, a player capable of memorizing the 
values of dealt cards can actually win consistently by betting 
high ,when the odds favor him and low when they do not. Such 
players are called counters, and in recent years they have done 
so well that most casinos now refuse to let known counters 
play the game. It  hardly seems fair, because someone who is 
counting is not in any reasonable sense of the word cheating. 

Intuition can go wildly astray in evaluating feedback from 
dealt cards. I know of no more startling example than a card- 
betting game discovered by Robert Connelly, a mathemati- 
cian at Cornell University who made news in 1978 by dis- 
proving a famous conjecture about polyhedrons. If a polyhed- 
ron h~as rigid faces but is hinged along all its natural edges, 
can it be "flexed," that is, made to alter its shape? It had been 
known since 1813 that the answer is no if the polyhedron is 
convex, and it had been conjectured that the same was true 
of all nonconvex polyhedrons with nonintersecting faces. 
Connelly found a counterexample with 18 triangular faces. 

C:onnelly calls his game Say Red. The banker shuffles a 
standard deck of 5 2  cards and slowly deals them face up. The 
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dealt cards are left in full view where they can be inspected 
at any time by the player. Whenever the player wants, he may 
say "Red." If the next card is red, he wins the game, other- 
wise he loses. He must call red before the deal ends, even if 
he waits to call on the last card. What odds should the banker 
give to make it a fair game, assuming that the player adopts 
his best strategy on the basis of feedback from the dealt cards? 
The player must announce the size of his bet before each game 
begins. 

Another well-kept secret of psychic charlatans for in- 
creasing their probability of success is the use of what Dia- 
conis, in the paper mentioned above, calls multiple end points. 
Magicians know them more informally as "outs." The basic 
idea is for the psychic not to specify in advance exactly what 
he plans to do and then let the outcome depend on what hap- 
pens. As Diaconis puts it, the chance for some kind of coin- 
cidence is very much better than the chance for a coincidence 
specified in advance. Diaconis describes the work of a psychic 
known in the literature as "B. D.," whose playing-card feats 
were favorably written about in three papers in Rhine's Jour- 
nal of Parapsychology. Diaconis, a former magician of great 
skill with cards, was present as  an observer during one of B. 
D.'s demonstrations at  Harvard University. Diaconis recog- 
nized at once that B. D.'s main secret was his reliance on 
outs. 

Although I cannot go into detail here about how magi- 
cians who pretend to be psychics make extensive use of outs, 
I can illustrate the technique with an anecdote followed by 
two remarkable "precognition" tricks with which readers can 
amaze their friends. Paul Curry, a New York amateur magi- 
cian, likes to remember the time a magician friend had been 
asked to do some card tricks at  a party. He noticed that the 
deck handed to him included a card, say the eight of clubs, 
that was badly torn. Since such a card would have interfered 
with his manipulations, he surreptitiously removed it and put 
it in his pocket. During his performance he asked someone to 
name a card. A woman called out: "The eight of clubs." With- 
out thinking he responded: "I'm sorry, madam, but you'll have 
to call another card. You see, before I started performing I 
noticed that the eight of clubs was torn and so I-" He broke 
off and almost fainted when he realized he had missed a chance 
to work a miracle: to make the named card vanish from the 
deck and reappear in his pocket, albeit damaged in transit. 



It is hard to believe, but magicians have actually devised 
tricks with a stacked deck (a deck in prearranged order) with 
52 diifferent outs depending on the card named! The card can 
be shown on the top, on the bottom or as the only reversed 
card iin the deck. One can spell or count to the card in various 
ways, discover a duplicate of the card tacked to the ceiling, 
take from the breast pocket a handkerchief and open it to show 
on it a large picture of the card, have a spectator look under 
the ciushion of his seat and find a duplicate of the card, show 
that it is the only card missing from the deck, toss the deck 
against a window blind and have the blind shoot up to reveal 
the card pasted outside the window, and so on. 

The following clever card trick, calling for six cards and 
six outs, has several forms. The version given here was de- 
vised by Tom Ransom of Toronto. The six cards are arranged 
in a row. You can tell your audience honestly that the cards 
bear values from 1 through 6. All the cards except one have 
a blue back. The two of spades has a red back and is face up. 
All the cards are spades except the five of hearts, which is of 
course face down. Write on a piece of paper, "You will choose 
the red card," and put the prediction face down. 

P L S ~  for any number from 1 through 6. If you like, you can 
hand someone an "invisible die" and ask him to pretend to roll 
it and tell you what number comes up. Here are the six outs 
for each of the six numbers: 

1. From your left count to the first card. Turn it over to 
show its red face. Turn over the other face-down cards to 
s h o ~ ~  that all their faces are black. 

2. Turn over the deuce to show its red back. Reverse the 
other two face-up cards to show that all the other cards 
have blue backs. 

3. Ask someone to count to the third card from his left. 
Finish as  above. 

4. Count to the fourth card from your left. Finish as above. 

5. Turn over all the face-down cards to disclose that the 
five-.spot card is the only one with a red face. 

6. Ask the other person to count from his left to the sixth 
card. Finish as above. 

No matter what number is chosen your prediction will be 
accurate. You cannot, of course, repeat the trick for the same 
audience. 



Fl (Low numbers) 

Psychic Wonders and Probability 

Back 11 (High numbers) 

223 

FIGURE 96 Shigeo Futigawa's sum prediction trick 

Another ingenious trick involving outs is currently on sale 
in Japanese magic shops. It is the invention of Shigeo Futa- 
gawa, a mathematics teacher and amateur magician. 

You will need four identical cards that are blank on both 
sides. On one card print the number 17 and on the back of it 
print the number 30. On the other three cards print the num- 
ber pairs 26/39, 28/41 and 45/58. In the first row of Figure 96 
are four cards that have been put down with their low number 
uppermost. You must memorize these four low numbers so 
that you can identify them quickly, or if you prefer, you can 
pencil a dot somewhere near each of them to distinguish them 
from the high numbers on the back of the cards. 

Hand the four cards to someone with the request that he 
mix them thoroughly by turning the cards over any way he 
likes and that he then place the cards on the table so that the 
four visible numbers have been randomly selected. Before he 
does so you write a predicted total on a piece of paper and 
put it face elown to one side. 

When the randomized cards are on the table, there are 
just three possibilities. For each you follow a different pro- 
cedure: 

1.  The cards may show two low numbers and two high ones. 
In the long run this will happen three out of eight times. 
Have the four numbers added. The sum will be 142. That 
is what you wrote on the paper. Let someone check your 
prediction. 

2. All four cards may be high or all four low. This happens 
one out of eight times. Stand up, turn your back and ask 
someone to randomize the numbers a bit more by turning 
over any pair of cards. That, of course, alters them to two 
high and two low, and so you finish a s  before. 



3.  The cards may show either three high and one low or three
low and one high. This, perhaps surprisingly, is the commonest
pattern, occurring with a probability of exactly 1/2. When it hap-
pens, pick up the single card (either the sole low card or the sole
high card) and as you turn it over say: “Please notice that the
numbers on opposite sides of each card are not the same. If you
had placed this card down the other way, the sum of the four vis-
ible numbers would have been entirely different.” You now stand
up, turn your back and ask someone to reverse any two cards to
randomize them further. Because that yields an even split of high
and low numbers, you can finish as you did in the first case.

In brief, the procedure you adopt always yields a sum of 142,
so you can’t miss. Note that the difference between each pair of
numbers on a card is 13. I leave it to the reader to prove alge-
braically that the trick must work. The difference can be any num-
ber. The predicted total will be the sum of the four low numbers
plus twice the difference. This makes it easy to prepare cards with
numbers other than the eight I have given here.

Is it possible to prepare four cards with eight different numbers
so that the trick can be done exactly the same way except that the
four selected numbers are multiplied instead of added? You must
be able to predict the product the same way you predicted the
sum, and by following the same three outs. The answer is yes, and
Futagawa has designed such a set of cards as a variant of his ear-
lier trick. I shall describe this second set in the answer section and
explain the secret of its construction.

ANSWERS

The first problem concerned Robert Connelly’s card betting
game Say Red. In the game a banker deals cards face up from a
standard deck, and at some point (before the last card is dealt)
the player must say “Red.” If the next card is red, he wins the
game; otherwise he loses. At all times the player may inspect the
cards already dealt. From this information can he devise a strate-
gy that will in the long run raise his probability of winning above
1/2?
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Surprisingly, he cannot. There are many formal proofs of 
this fact, but perhaps the best way to "see" why it is true is 
to analyze a deck consisting of two black and two red cards. 
Labeling the black cards B and the red cards R, the six equally 
likely deals are as  follows. 

RRBB 
RBRB 
RBBR 
BBRR 
BRBR 
BRRB 

Glancing down the column, it is obvious that the proba- 
bility the player will win is 112 regardless of whether he calls 
before the first, the second, the third or the last card has been 
dealt. On the other hand, suppose two black cards are dealt. 
One could argue that the third must be red and therefore the 
player cannot lose. That is true, but in the long run it happens 
only once in six deals. On the other five deals the probability 
that the player will win is 516 x 215, or 113, and so the overall 
probability of winning on the third card is 116 + 113, or 112. 

Now try a different tack. Suppose the player's strategy is 
to call red after the first card is dealt if that card is black, and 
otherwise to call red before the last card is dealt. If the first 
card is black, the player does have a 213 chance of winning 
on the next card, but this is counterbalanced by the fact that 
if the first card is not black, he has a 213 chance of losing on 
the last card. 

This reasoning generalizes to decks with b black cards 
and r red ones. The probability that a player will win by any 
strategy whatsoever, Connelly points out, is always rl(b + r). 
Therefore knowing which of the cards in a deck have been 
dealt gives a player no advantage at all, regardless of the ratio 
of the black cards to the red cards or the size of the deck. No 
strategy is better than always calling red on the first card, or 
on the last card, or indeed on any card. (As I stated, the player 
must specify his bet before each deal; otherwise he could come 
out ahead by, as in a system for playing blackjack, betting 
high when the odds favor him and low when they do not.) 

The second problem was to design a set of four cards for 
a magic trick similar to the one described except that the four 
numbers apparently picked at random must always have the 
same product rather than the same sum. The secret is to choose 



pairs of numbers to be placed on opposite sides of the cards 
that all have the same ratio. For example, on the cards pre- 
pared by Shigeo Futagawa, the magician who invented both 
variants of the trick, the number pairs are 26/34, 39/51, 
52/68 and 65/85. In each case the ratio is 13 to 17. 

The trick is handled almost exactly the way the one I de- 
scribed earlier is, except that the four selected numbers 
are multiplied instead of added. The predicted product in 
this case is 5,860,920. Note that this number is equal to 
13x 13x 17x 1 7 ~ 2 x 3 ~ 4 ~ 5 .  As with the addition version, I 
leave it to readers to prove algebraically that the trick cannot 
fail. 

Several versions of the red card prediction have appeared in 
magic literature in which more than six cards are in the row. 
In my opinion they all suffer from the use of spelling the names 
of numbers instead of counting. Everybody should realize that 
one, two, six and ten have three letters; four, five and nine 
have four letters; and three, seven, and eight have five letters. 
This weakens the use of spelling for any of the outs. An ex- 
ample using such spellings is a ten-card version by "Corinda," 
in his book 13 Steps to Mentalism. Magicians have also de- 
vised ways of apparently showing the six cards, in the version 
I gave, as the ace through six of spades, and all with blue 
backs. The later appearance of a red deuce or a red-backed 
five then comes as a magical surprise. 

R. L. Dreyfus suggested that in Futigawa's prediction the 
cards could have low even numbers on one side and high odd 
numbers on the other. The advantage would be that it is eas- 
ier to distinguish even from odd than high from low. 

Persi Diaconis pointed out that the sniff signal, used in 
calculating animal acts, is also commonly used by two collab- 
orating hustlers in poker, bridge, and other card games. It alerts 
the partner for a secret gesture that will indicate what is in 
the signaler's hand. 
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I shall begin with a remarkable discovery made independently by
Michael Slater and David Klarner in the early 1960’s. Pure-number
theorists were working on a problem concerning any set of consecu-
tive integers from 1 through 2 , where is a positive integer. Suchn n



a set can always be divided into two equal subsets, one made 
up of the consecutive integers 1 through n and the other made 
up of the consecutive integers n+ 1  through 2n .  The problem 
asks whether for different va,lues of n it is possible to pair 
each number in one subset with a number in the other so that 
the 2 n  sums and absolute (unsigned) differences of the num- 
bers in each pair are all distinct. For example, if n= 1 ,  then 
the original set is {1 ,2 ) ,  and its subsets are ( 1 )  and (2 ) .  In this 
case the only pairing provides a trivial solution, because the 
sum 1  -t 2 ,  or 3, is distinct from the absolute value of the dif- 
ference 1 - 2 ,  or 1 .  

Klarner's clever discovery was that this problem is iso- 
morphic with a variation of the old chess problem of how to 
put n chess queens on a board of side n in such a way that no 
two queens attack each other. He modified the task by plac- 
ing an extra row at the top of the chessboard. He calls the 
row a reflection strip, because, as is shown with a dashed line 
in Figure 97, one queen can attack another by reflection in 
the strip. In other words, a queen is allowed to move diago- 
nally into the strip and out again on the opposite diagonal to 
attack another queen. In Klarner's paper "The Problem of Re- 
flecting Queens" he proved that the number-theory problem 
for a given n has a solution if and only if it is possible to place 
n queens on an n-by-n board with a reflection strip in such a 
way that no two queens attack each other either directly or 
by reflection. 

Mathematical Chess Problems 

FIGURE 97 Two queens attacking by reflection 
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Pa~rs S u m  Difference Pairs S u m  Difference 

1,7 8 6 1,6 7 5 
2,s 7 3 2,8 10 6 
3,8 11 5 3.5 8 2 
4,6 10 2 4,7 11 3 

FIGUFLE 98 Four queens placed so that no two attack each other 
directly or by reflection 

Figure 98 shows how easily a solution of this variation on 
the queen-placement problem (in this instance for the case 
n= 4) can be transformed into a solution of the number prob- 
lem. Beginning at the upper left on the board, number the 
rows consecutively from top to bottom and then continue the 
sequence from left to right below the columns, as is shown in 
the illustration. Note that the two solutions shown (the only 
ones fbr this case) are left-to-right mirror images. Now make 
a list of the row and column numbers, or coordinates, for each 
queen, as is shown below the boards in the illustration. Tak- 
ing the sums and differences of the eight pairs of numbers 
obtained in this way, it is easy to verify that they provide a 
soluticsn to the number-theory problem for the case n= 4. 

It is not hard to understand why the two problems are 
isomorphic. It is obvious that the set of numbers listed around 
the outside of the chessboard is equal to the set of numbers 1 
through 2n and that the row numbers for the queens in a so- 
lution form one subset of the set and the column numbers form 
another subset. If two queens did attack each other in the 
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same row or column, then a number would be duplicated in 
one of the subsets. Since this cannot happen, the subsets must 
respectively be made up of the numbers 1 through n and the 
numbers n+ 1 through 2n. Moreover, if two queens attacked 
on a diagonal slanting up and to the right, one of the sums 
would be repeated. If two queens attacked on a diagonal 
slanting down and to the right, an absolute difference would 
be repeated. And if two queens attacked by reflection in the 
strip, a sum and an absolute difference would be equal. Since 
no two queens may attack each other directly or by reflection, 
however, the sums and absolute differences of the pairs of 
numbers derived from the chess solution must all be distinct, 
and so they provide a solution to the number-theory problem. 

Solutions to the classic queens problem (with no reflec- 
tion strip) on boards of up through order eight have long been 
known and are discussed in Chapter 16 of my book The Un- 
expected Hanging and Other Mathematical Diversions. There are 
no solutions for orders two and three and, ignoring rotations 
and reflections, only one "basic" solution for order four, two 
basic solutions for order five, one for order six, six for order 
seven and twelve for order eight. To derive all the solutions 
for the corresponding number problem from one of these sets 
of solutions it is necessary to consider the four rotations of 
each basic pattern and their left-to-right mirror images, ruling 
out all cases in which queens attack by reflection in a strip 
added to the board. The remaining cases provide a complete 
set of solutions to the number problem. 

For the case n=4 the pattern of the four queens that is 
the single solution to the basic problem has rotational sym- 
metry, so that there is no need to test rotations. For n= 5 the 
five queens can be arranged in the two essentially different 
ways shown in Figure 99. The pattern at the left contains a 
reflection attack (shown by the dashed line) and has rota- 
tional symmetry. Therefore it cannot in any of its rotations or 
reflections generate a solution to the number problem. The 
second pattern generates one solution in the orientation shown 
and another when it is rotated clockwise 90 degrees. The 
mirror images of these two patterns give two other solutions, 
making four in all. 

The single pattern of nonattacking queens in the case n = 6 
has reflection attacks in all rotations (and in their mirror im- 
ages), so that there is no solution to the corresponding num- 
ber problem. Therefore the following playing-card puzzle can- 



FIGURE 99 Classic non-attacking queens problem has two basic 
solutior~s for the case n = 5 

not be solved. Place in a row cards with values 1, 2, 3, 4, 5 
and 6. The object of the puzzle is to place below each of these 
cards a card from the set 7, 8, 9, 10, jack and queen so that 
the 12 numbers obtained by taking the sum and the absolute 
difference of each vertical pair of cards are all distinct. (The 
jack and the queen are assumed to have values of 11 and 12.) 

For the case n= 7 only one of the six basic patterns in 
only oine of its four rotations generates a solution. This pat- 
tern and its mirror image generate two solutions to the num- 
ber problem. Of the 12 basic patterns of nonattacking queens 
on the standard order-eight chessboard three have one rota- 
tion that avoids reflection attacks and another pattern has two. 
These five patterns and their mirror images generate 10 dis- 
tinct s~olutions to the number problem in the case n = 8. Inter- 
ested ireaders can find all of them by exploring the rotations 
and reflections of the 12 basic order-eight patterns shown on 
page 192 of The Unexpected Hanging. 

For square boards of orders higher than eight it is much 
easier to write a computer program for calculating the total 
number of solutions (including all rotations and reflections) to 
the variation on the nonattacking-queens problem than to write 
one that eliminates the rotations and reflections of the solu- 
tions tlo the basic problem. Some recent programs have, how- 
ever, extended the number of basic patterns for orders nine 



son, Slater and Klarner conjecture that for all greater than 6 the
number problem has at least one solution. In 1969 J. D. Sebastian
reported on a computer program that found a solution to the
number problem for every value of from 9 through 27. The
number of distinct solutions for values of greater than 8 remains
unknown.
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Anno':; passion for mathematical themes, he has been called 
the M. C. Escher of Japan. The illustration is reproduced from 
his bolok Anno 1968-1 977. 

Anno's picture calls to mind two whimsical chess tasks 
that Sam Loyd, America's greatest composer of puzzles and 
chess problems, published in 1866. In both tasks it is as- 
sumed, that every move by Black will be a mirror-image du- 
plicate of the preceding move by White. (Obviously we are 
concerned here only with possible, or legal, play, not with 
competent play.) The first task is to design a mirror-play game 
in which White checkmates on his fourth move. The second 
and much more difficult task is to design a mirror-play game 
in which White makes an eighth move that forces Black to 
checkinate him with a nonmirror move. (Students of chess 
problems call such a move a selfmate.) 

How many different moves can be made on a standard 
chessboard? The answer is 1,840. Each move is represented 
by a line segment in the graph shown in Figure 101. The graph 
is taken from statistician I. J. Good's 1972 Christmas card. 
The 64 cells of the chessboard have been replaced by 64 dots, 
so that the graph appears to display a seven-by-seven board. 

Good's graph calls to mind a nontrivial graph-coloring 
problem that has been applied to square chessboards. Given 
any one of the five different chess pieces, what is the mini- 
mum number of colprs needed for coloring the cells of a board 
so that no matter where the piece is placed on the board it 
can orily move to a cell of a different color? This minimum 
number is called the chromatic number of the order-n board 
for the piece. 

The smallest chromatic number is 2, the number of colors 
needed for the knight on all boards of side three or more. The 
graph-coloring solution for any of these boards is simply to 
color its cells ljke those of a checkerboard. This finding gives 
a quick solution to the following brainteaser: If every cell of 
a chessboard is occupied by a knight, can all the knights si- 
multarieously move to another cell? The answer is yes if and 
only if the board's side length is even, because only then are 
there equal numbers of cells of each color. If the side length 
is odd, there is an extra cell of one color. In that case, since 
every knight must move to a cell of the other color, there must 
be at  least one knight with no place to go. 

The chromatic number for the king on all square boards 
of side two or more is 4. If the four colors are labeled A, B, C 



FIGURE 101 The 1,840 different moves in a chess game 
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and D, the top row of the board is colored ABABAB . . . , 
the second row CDCDCD . . . , the third row ABABAB . . . 
and so on. For a rook the chromatic number of an n-by-n board 
is n. To color the board begin at  a corner and color parallel 
diagonal lines, using color A for the one cell of the first diag- 
onal, B for the two cells of the second diagonal, C for the 
three cells of the third diagonal and so on until the nth color 
is used for the main diagonal. Starting again with A for the 
next diagonal, use the same sequence of colors for the re- 
maining smaller diagonals. 

For a bishop the chromatic number is n or n - 1, depend- 
ing on whether the longest diagonal on which the bishop can 
move has n or n - 1 cells. If the bishop can move n cells, color 
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each row a different color. If the bishop's longest move is n- 1 
cells, the color of the first row can be repeated on the nth 
row. 

The case of the queen is the most interesting because it 
corresponds to the ancient combinatorial problem of forming 
"diagonal Latin squares," or n-by-n matrixes with cells col- 
ored so that no color is repeated within a single row, column 
or diargonal of any length. The minimum number of colors 
needed will obviously be equal to the chromatic number of an 
order-n chessboard for the queen. More than 60 years ago 
George P6lya proved that such n-by-n squares can be formed 
with n colors if and only if n is not divisible by 2 or 3.  P6lya's 
method of coloring the five-by-five square is shown in Figure 
102. Note that the hatched and dotted squares mark parallel 
chains of knight moves. (These chains are more evident in the 
pattern for the 11-by-1 1 square in the Dover reprint of Maur- 
ice Kraitchik's Mathematical Recreations, page 252.) Similar 
patterns generate solutions for any order-n board when n is 
not a multiple of 2 or 3. 

Clonsider what happens on any such board if red queens 
are placed on all the red cells, blue queens on all the blue 
cells, green queens on all the green cells and so on. It will 
obviously be possible to place n differently colored sets of n 
queens on the n-by-n board in such a way that no queen of 
one color attacks another of the same color. The smallest board 
of this type (other than the trivial one-by-one board) is the 
order-five board. It has often been sold as a commercial puz- 

FIGURE 102 A pandiagonal Latin square of order five 



zle with 25 counters divided into five differently colored sets 
of five counters each. The task is to place the counters so that 
no counter shares a row, a column or a diagonal with another 
counter of the same color. 

As far as I know the chromatic-number problem for the 
queen has not yet been solved for all order-n boards when n 
is a multiple of 2 or 3, although the answer is known for many 
low-order boards. For example, the six-by-six board requires 
seven colors and the eight-by-eight requires nine. It has been 
established that the queen's chromatic number, which cannot 
be less than n, cannot be greater than n +  3. 

Polya's coloring method has an additional attribute that 
is often called the wraparound property: if either pair of op- 
posite edges of the colored board are joined to make a cylin- 
der, it will still be true that every diagonal contains n colors. 
In a different terminology each "broken diagonal" of the square 
has n colors. Squares with this property are called pandi- 
agonal Latin squares. 

A superqueen, or amazon, is a special chess piece that 
combines the moves of a queen and a knight. I t  is not possible 
to place n superqueens on an order-n board so that they do 
not attack one another when n is less than 10. The one solu- 
tion in the case n =  10 is shown in Figure 103. Solomon W. 
Golomb has proved that such patterns do exist when n is 
greater than 9 and is either a prime or one less than a prime. 
Ashok K. Chandra has shown that a wraparound pattern of n 
nonattacking superqueens exists for an order-n board if and 
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FIGURE 103 Smallest n-by-n board for n superqueens 
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only if n is greater than 11 and is not a multiple of 2 or 3. I 
know of no general solution of the superqueen problem. 

Sin Hitotumatu of Kyoto wrote a computer program that 
found six solutions for the order-11 board, although all of them 
are identical if the board is wrapped around in both direc- 
tions to make a torus. These solutions were found earlier by 
Golornb and are based on his construction method. To find 
one of them simply extend the order-10 solution shown in 
Figure 103 by adding a row at the top and a column at the 
right; the 1 l th  superqueen is placed in the upper right-hand 
corner of the board, as is shown by the asterisk. Hitotumatu 
also found 22 basic solutions for the superqueen problem on 
the order-12 board. The one in Figure 104 is the prettiest, 
with its symmetrical arrangement of two equal squares and a 
smaller interior square. (The dotted lines show how the smaller 
square can be modified by rotation.) 

Donald E. Knuth found a method for solving the order-14 
and -15 cases that generalizes to certain higher orders. It is 
now 'known that if the Knuth and Chandra constructions are 
comblined, solutions to the superqueen problem exist when- 
ever n is greater than 9 and does not have the form 12k + 8 or 
12k+9 for some integer k. Chandra's method provides solu- 
tions for the cases n=6k,  n = 6 k +  1, n = 6 k + 4  and n = 6 k + 5 ;  
Knuth's method provides solutions for half of the remaining 
cases;. Hence the smallest unresolved cases are n = 20, n = 2 1, 
n=32  and n=33.  

FIGURE 104 Twelve superqueens on a 12-by- 12  board 
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FIGURE 105 How can White mate in less than one move? 

I shall conclude with a joke. How can White, in the po- 
sition shown in Figure 105, checkmate Black by making a 
fraction of a move? 

Sam Loyd's mirror-move game, in which White mates on his 
fourth move, has two solutions: 

White Black 
1. 1. P-QB4 1. P-QB4 

2. Q-R4 2. Q-R4 
3. Q-B6 3. Q-B6 
4. QxB (mate) 

2. Q - ~ 3  2. Q-Q3 
3. Q-KR3 3. Q-KR3 

(or B5) (or B5) 
4. QxB (mate) 
Loyd's mirror-move game in which White self-mates on 

his eighth move is played as follows: 

White Black 
1. P-K4 1. P-K4 
2. K-K2 2. K-K2 



5. N-K2 5. N-K2 
6. P-QN3 6. P-QN3 
7. B-R3 7. B-R3 
8. N-Q4 (check) 

Black's only possible move is PxN, which checkmates the 
white king. 

To achieve the joke checkmate in the final problem White 
simply raises his knight an inch or so above its square and 
shouts, "Discovered, mate!" 

I said that the numbers of distinct solutions to the reflecting 
queens problem were not known beyond n= 8. Paul Stevens, 
then at Madison, Wisconsin, was the reader whose computer 
program extended this the furthest. A chart of his results for 
n through 17 is given in Figure 106. 

In 1980 I heard from three readers who established that 
solutilons for nonattacking superqueens exist for any n greater 
than 5 ) :  Ashok Chandra at IBM; Charles Zimmerman of Mad- 
ison, Wisconsin; and J. Reineke and P. Pappinghaus at  the 
University of Hanover. I do not know if any such proofs have 
been published. Many readers extended the enumeration of 

FIGUIRE 106 Paul Steven's ennumeration of distinct solutions to 
the reflecting queens problem 

Side of Board 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Solutions 

2 
4 
0 
2 

10 
32 
38 

140 
496 

1,186 
3,178 

16,792 
82,038 

289,566 

Solutions with 90-Degree 
Rotational Symmetry 

2 
0 
0 
0 
0 
0 
0 
0 
8 
0 
0 
0 

48 
0 
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distinct solutions beyond n = 12, but again I know of no published
results.

Numerous alternate solutions to the joke problem of mate in
half a move were proposed by readers. Abraham Schwartz suggest-
ed lifting the bishop or queen slightly above the board, or moving
the rook east and planting it on the line separating the rook from
the knight column. Fred McCarthy had the ingenious thought of
assuming that a white pawn on QB7 had moved to QB8 and had
been removed, but the substitution of a queen for the pawn had
not yet been made. He noted that the pawn could also have been
on QR7 or QB7, and a black piece on QN1. The pawn has cap-
tured the piece and been removed, but not yet replaced by a mat-
ing queen or rook. If the captured black piece is on QB1, the white
pawn can start on either QB7 or Q7 to be promoted to a queen
after the capture. Similar tactics were sent by Freidrich-Wilhelm
Scholz and Victor Feser. Feser said that strictly speaking, such
mates should be called one-third-of-a-movemates because two
steps have occurred—advancing the pawn, and its removal, with
the replacement by a queen the third step. He cited earlier prob-
lems calling for mate in half a move in which the mate is achieved
by half of a castling move.
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~ o u g l a s  ~ofstadter 's 

G*de( Esther, Bach 

This sentence no verb. 

-DOUGLAS R. HOFSTADTER, 
Godel, Escher, Bach: 

an Eternal Golden Braid 

E very few decades an unknown author brings out a book of such 
depth, clarity, range, wit, beauty and originality that it is rec- 

a ognized at once as a major literary event. Godel, Escher, Bach: 
an Eternal Golden Braid, a hefty (777 pages) volume pub- 
lished by Basic Books (1979), is such a work. The author (and 
the illustrator and typesetter) is Douglas R. Hofstadter, a young 
computer scientist at  Indiana University who is the son of the 
well-known physicist Robert Hofstadter. 

What can Kurt Godel, M. C. Escher and Johann Sebas- 
tian Bach have in common? The answer is symbolized by the 
objects shown in the photograph that is Figure 107, and in 
the photograph on the book's jacket. In each photograph two 
wood blocks floating in space are illuminated so that their 
shadows on the three walls meeting at the corner of a room 



FIGURE 107 G, E and B cast as shadows by a pair of "trip-lets" 

form the initials of the three surnames Godel, Escher and Bach. 
More precisely, the upper block casts "GEB" (Godel, Escher, 
Bach) the heading of the book's first half, and the lower block 
casts "EGB" (Eternal Golden Braid) the heading of its second 
half. The letters G, E and B may be thought of as  the labels 
for three strands that are braided by repeatedly switching a 
pair of letters. Six steps are required to complete a cycle from 
GEB (through EGB) back to GEB. 

Dr. Hofstadter (his Ph.D. is in physics from the Univer- 
sity of Oregon) calls such a block a "trip-let," a shortened form 
of "three letters." The idea came to him, he explains, "in a 
flash." Intending to write a pamphlet about Godel's theorem, 
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his thoughts gradually expanded to include Bach and Escher 
until finally he realized that the works of these men were "only 
shadows cast in different directions by some central solid es- 
sence." He "tried to reconstruct the central object, and came 
up with this book." 

Hofstadter carved the trip-let blocks from redwood, using 
a band saw and an end mill. The basic idea behind this form 
is an elaboration of the classic puzzle that asks what solid 
shape will cast the shadows of a circle, a square and a trian- 
gle. Can a trip-let be constructed for any set of three different 
letters? If the letters may be distorted sufficiently, the answer 
is yes, and so to make the problem interesting some restric- 
tions must be imposed. To begin with, the letters (preferably 
uppercase) must all be conventionally shaped, and they must 
fit snugly into the three rectangles that are the orthogonal 
projections of a rectangular block. In addition the solid must 
be connected, that is, it must not fall apart into separate pieces. 
It is not easy to determine except by trial and error whether 
such a trip-let can be made for any three given letters. As it 
turns out, some trip-lets are not possible. This problem sug- 
gests exotic variations, for example n-tup-lets that project n 
letters; four-dimensional tug-lets that project solid trip-lets 
that in turn project plane shadows of letters; solids that pro- 
ject numbers, pictures or words, and so on. (For this descrip- 
tion of trip-lets I am indebted to Hofstadter's friend Scott Kim, 
who worked closely with him on many aspects of the book.) 

What reality does Hofstadter see behind the work of his 
three giants? One aspect of that reality is the formal structure 
of mathematics: a structure that, as Godel's famous undecid- 
ability proof shows, has infinitely many levels, none of which 
are capable of capturing all truth in one consistent system. 
Hofstadter puts it crisply: "Provability is a weaker notion than 
truth." In any formal system, rich enough to contain arithme- 
tic, true statements can be made that cannot be proved within 
the system. To prove them one must jump to a richer system, 
in which again true statements can be made that cannot be 
proved, and so on. The process goes on forever. 

Is the universe Godelian in the sense that there is no end 
to the discovery of its laws? Perhaps. It may be that no matter 
how deeply science probes there will always be laws uncap- 
tured by the theories, an endless sequence of wheels within 
wheels. Hofstadter argues eloquently for a kind of Platonism 
in which science, at  any stage of its history, is like the shadow 



pr~je~ctions on the wall of Plato's cave. The ultimate reality is 
always out of reach. It is the Tao about which nothing can be 
said. "In a way," Hofstadter writes at  the end of his preface, 
"this book is a statement of my religion." 

For laymen I know of no better explanation than this book 
presents of what Godel achieved and of the implications of his 
revo1,utionary discovery. That discovery concerns in particu- 
lar recursion, self-reference and endless regress, and Hof- 
stadt'er finds those three themes vividly mirrored in the art of 
Escher, the most mathematical of graphic artists, and in the 
music of Bach, the most mathematical of the great compos- 
ers. 'The book's own structure is as saturated with complex 
counterpoint as a Bach composition or James Joyce's Ulysses. 
The first half of the book serves as a prelude to the second, 
just as a Bach prelude introduces a fugue. Moreover, each 
chapLer is preceded by a kind of prelude, which early in the 
book takes the form of a "Dialogue" between Achilles and the 
Tortoise. Other characters enter later: the Sloth, the Ant- 
eater, the Crab and finally Alan Turing, Charles Babbage and 
the author himself. Each Dialogue is patterned on a compo- 
sition by Bach, and in several instances the mapping is strict. 
For example, if the composition has n voices, so does the cor- 
responding Dialogue. If the composition has a theme that is 
turned upside down or played backward, so does the Dia- 
logue. Each Dialogue states in a comic way, with incredible 
wordplay (puns, acrostics, acronyms, anagrams and more), the 
themes that will be more soberly explored in the chapter that 
follo~ws. 

There are two main reasons for Achilles and the Tortoise 
having been chosen to lead off the Dialogues. First, they play 
the nnajor roles in Zeno's paradox (the topic of the book's first 
Dialogue), in which Achilles must catch the Tortoise by es- 
caping from an infinite regress. Second, they are the speakers 
in ark equally ingenious but less familiar paradox devised by 
Lewis Carroll. In Carroll's paradox, which Hofstadter re- 
print.~ as his second Dialogue, Achilles wishes to prove Z, a 
theorem of Euclid's, from premises A and B. The Tortoise, 
however, will not accept the theorem until Achilles postu- 
lates a rule of inference C, which explicitly states that Z fol- 
lows from A and B. Achilles adds the rule to his proof, think- 
ing the discussion is over. The Tortoise then, however, jumps 
to a higher level, demanding another rule of inference D, which 
states that Z follows from A, B and C, and so it goes. The 
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resulting endless regress seems to invalidate all reasoning in 
much the same way that Zeno's paradox seems to invalidate 
all motion. "Plenty of blank leaves, I see!" exclaims Carroll's 
Tortoise, glancing at Achilles' notebook. "We shall need them 
ALL!" The warrior shudders. 

One of Hofstadter's Dialogues, "Contracrostipunctus," is 
an acrostic (complete with punctuation marks) asserting that 
if the words in it are taken backward, they provide a second- 
order acrostic spelling out "J. S. Bach." Another Dialogue, 
"Crab Canon," which is illustrated with an Escher periodic 
tessellation of crabs, is based on Bach's "Crab Canon" in his 
Musical Offering. As the Tortoise discusses Bach, his sen- 
tences are interspersed with those of Achilles, who is dis- 
cussing Escher. The Tortoise and Achilles use the same sen- 
tences in reverse order. The Crab enters briefly at the crossing 
point to knot the halves of their discourse together, halves 
that interweave in time in the same way that the positive and 
negative crabs of Escher's tessellation interweave in space. 

The initials A,T and C (for Achilles, Tortoise and Crab) 
correspond to the initials of adenine, thymine and cytosine, 
three of the four nucleotides of DNA, the molecule with the 
extraordinary ability to replicate itself. Just as Achilles pairs 
with the Tortoise, so adenine pairs with thymine along the 
DNA double helix. Cytosine pairs with guanine. The fact that 
the initial G can be taken to stand for "gene" prompted Hof- 
stadter to do a "little surgery on the Crab's speech" so that it 
would reflect this coincidence. The striking parallel between 
the tenets of mathematical logic and the "central dogma" of 
molecular biology is dramatized in a chart Hofstadter calls 
the "Central Dogmap." 

The letter G also stands for Godel's sentence: ihe sen- 
tence at the heart of his proof that asserts its own unprov- 
ability. To Hofstadter the sentence provides an example of 
what he calls a Strange Loop, exemplifying the self-reference 
that is one of the book's central themes. (A framework in which 
a Strange Loop can be realized is called a Tangled Hierarchy, 
and the letters of "sloth" turn out to stand for "Strange Loops, 
or Tangled Hierarchies.") Dozens of examples of Strange Loops 
are discussed, from Bach's endlessly rising canon (which 
modulates to higher and higher keys until it loops back to the 
original key) to the looping flow of water in Escher's Waterfall 
and the looping staircase of his Ascending and Descending. One 
of the most amusing models of G is a record player X that 



self-destructs when a record titled "I Cannot Be Played on 
Record Player X" is played on it. 

P L  particularly striking example of a two-step Strange Loop 
is Escher's drawing of two hands, each one sketching the other. 
We who see the picture can escape the paradox by "jumping 
out of the system" to view it from a metalevel, just as we can 
escape the traditional paradoxes of logic by jumping into a 
metallanguage. We too, however, have Strange Loops, be- 
cause the human mind has the ability to reflect on itself, that 
is, the firing of neurons creates thoughts about neurons. From 
a brolader perspective the human brain is at  a level of the 
universe where matter has acquired the awesome ability to 
contemplate itself. 

Ely the end of Godel, Escher, Bach Hofstadter has intro- 
duced his readers to modern mathematical logic, non-Euclid- 
ean geometries, computability theory, isomorphisms, Henkin 
sentences (which assert their own provability), Peano postu- 
lates (the pun on "piano" is not overlooked), Feynman dia- 
grams for particles that travel backward in time, Fermat's last 
theorem (with a pun on "fermata"), transfinite numbers, Gold- 
bach's conjecture (which is cleverly linked with Bach's Gold- 
berg lY'ariations), Turing machines, computer chess, computer 
music, computer languages (Terry Winograd, an expert on the 
computer simulation of natural language, appears in one Dia- 
logue under the anagrammed name of Dr. Tony Earrwig), mo- 
lecular biology, the "mind" of an anthill called Aunt Hillary, 
artificial intelligence, consciousness, free will, holism v. re- 
ductionism, and a kind of sentence philosophers call a coun- 
terfactual. 

Clounterfactuals are statements based on hypotheses that 
are contrary to fact, for example, "If Lewis Carroll were alive 
today, he would greatly enjoy Hofstadter's book." These 
statements pose difficult problems in the semantics of sci- 
ence, and there is now a great deal of literature about them. 
For Hofstadter they are instances of what he calls slipping, 
progressing from an event to something that is almost a copy 
of it. The Dialogue that precedes a chapter on counterfac- 
tuals and artificial intelligence concerns a Subjunc-TV set that 
enables an observer to get an "instant replay" of any event in 
a football game and see how the action would have looked if 
certain parameters were altered, that is, if the ball were 
spherical, if it were raining, if the game were on the moon, if 
it weire played in four-dimensional space and so on. 
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The book's discussion of artificial intelligence is also 
enormously stimulating. Does the human brain obey formal 
rules of logic? Hofstadter sees the brain as a Tangled Hier- 
archy: a multilevel system with an intricately interwoven and 
deep self-referential structure. It follows logical rules only on 
its molecular substrate, the "formal, hidden, hardware level" 
where it operates with eerie silence and efficiency. No com- 
puter, he believes, will ever do all a human brain can do until 
it somehow reproduces that hardware, but he has little pa- 
tience with the celebrated argument of the Anglican philoso- 
pher J. R. Lucas that Godel's work proves a human brain 
can think in ways that are in principle impossible for a com- 
puter. 

Only a glimpse can be given here of the recreational as- 
pects of this monstrously complicated book. In "The Magnifi- 
crab, Indeed" (a pun on Bach's Magnificat in D), the Dialogue 
that introduces a discussion of deep theorems of Alonzo 
Church, Turing, Alfred Tarski and others, appears a whimsi- 
cal Indian mathematician named Mr. Najunamar. Najunamar 
has proved three theorems: he can color a map of India with 
no fewer than 1,729 colors; he knows that every even prime 
is the sum of two odd numbers, and he has established that 
there is no solution to an + bn = cn when n is zero. All three are 
indeed true. 

Some readers will recognize 1,729 as the number of the 
taxi in which G. H. Hardy rode to visit the Indian mathema- 
tician Srinivasa Ramanujan ("Najunamar" spelled backward) 
in a British hospital. Hardy remarked to Ramanujan that 1,729 
was a rather dull number. Ramanujan rejoined instantly that 
on the contrary it was the smallest positive integer that is the 
sum of two different pairs of cubes. Hardy then asked his friend 
if he knew the smallest such number for fourth powers. Ra- 
manujan did not know the number, although he guessed that 
it would turn out to be fairly big. Hofstadter supplies the an- 
swer: 635,3 18,657, or 1344+ 1334 or 1584+594. He also won- 
ders if his readers can find the smallest number that can be 
expressed as  the sum of two squares in two different ways, 
but he hides the answer. Can you determine it before I supply 
it in the answer section? 

To explain the meaning of the term "formal system" Hof- 
stadter opens his book with a simple example that uses only 
the symbols M, I and U. These symbols can be arranged in 
strings called theorems according to the following rules: 



1. I:f the last letter of a theorem is I, U can be added to the 
theorem. 

2. To any theorem Mx, x can be added. (For example, MUM 
can be transformed into MUMUM, and MU can be trans- 
formed into MUU.)  

3. I:f III is in a theorem, it can be replaced by U, but the 
converse operation is not acceptable. (For example, MIII 
can be transformed into MU, and UMIIIMU can be trans- 
formed into UMUMU.) 

4. I:f U U  is in a theorem, it can be dropped. (For example, 
U U U  can be transformed into U,  and MUUUIII can be 
transformed into MUIII.) 

There is only one "axiom" in the system: In forming theo- 
rems one must begin with MI. Every string that can be made 
by applying the rules, in any order, is a theorem of the sys- 
tem. Thus MUIIU is a theorem because it can be generated 
from MI in six steps. If you play with the M, I and U system, 
constructing theorems at random, you will soon discover that 
all theorems begin with M and that M can occur nowhere else. 

Now for a puzzle: Is MU a theorem? I shall say no more 
about MU here except that it plays many other roles in the 
book, in particular serving as  the first two letters of "Mu- 
mon," the name of a Zen monk who appears in a delightful 
chapter on Zen koans. 

ECven as  simple a system as that of M, I and U enables 
Hofsltadter to introduce a profound question. If from all the 
possible strings in the system we subtract all the strings that 
are theorems, we are left with all the strings that are not 
theorems. Hence the "figure" (the set of theorems) and the 
"grou~nd" between the theorems (the set of nontheorems) seem 
to carry equivalent information. Do they really? Is the system 
like an Escher tessellation in which the spaces between ani- 
mals of one kind are animals of another kind, so that repro- 
ducing the shapes of either set automatically defines the other? 
(Or so that a black zebra with white stripes is the same as a 
white zebra with black stripes?) In this connection Hofstadter 
reproduces a remarkable tessellation by Kim in which the word 
"FIGURE" is periodically repeated in black so that the white 
ground between the black letters forms the same shapes [see 
Figure 1081. The same concept is playfully illustrated in the 
Dialogue "Sonata for Unaccompanied Achilles" (modeled on 
Bach's sonatas for unaccompanied violin), in which we hear 



FIGURE 108 Scott Kim's FIGURE FIGURE Figure. From Znver- 
sions (W. H. Freeman & Co., 1989). 
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only Achilles' end of a telephone conversation with the Tor- 
toise about "figure" and "ground." From Achilles' half of the 
conversation we can reconstruct the Tortoise's. 

Other figure-ground examples are provided by the count- 
ing numbers. For example, given all the primes, we can de- 
termine all the nonprimes simply by removing the primes from 
the set of positive integers. Is the same true of all formal sys- 
tems? Can we always take all the theorems from the set of all 
possible statements in the system and find that what is left- 
the set of nontheorems-is another complementary formal 
system? An unexpected discovery of modern set theory is that 
this is not always the case. To put it more technically, there 
are recursively enumerable sets that are not recursive. Thus 
does Hofstadter lead his readers from trivial beginnings into 
some of the deepest areas of modern mathematics. 

The book closes with the wild Dialogue "Six-Part Ricer- 
car," which is simultaneously patterned after Bach's six-part 
riceroar and the story of how Bach came to write his Musical 
Offering. (A ricercar is a complicated kind of fugue.) In this 
Dialogue the computer pioneers Turing and Babbage impro- 
vise at  the keyboard of a flexible computer called a "smart- 
stupi~d," which can be as smart or as  stupid as  the program- 
mer wants. (The computer's name is a play on "pianoforte," 
which means "soft-loud.") Turing produces on his computer 
screen a simulation of Babbage. Babbage, however, is seen 
looki~ig at the screen of his own smart-stupid, on which he 
has conjured up a simulation of Turing. Each man insists he 
is real and the other is no more than a program. An effort is 
made to resolve the debate by playing the Turing Game, which 
was proposed by Turing as a way to distinguish a human being 
from a computer program by asking shrewd questions. The 
conversation in this scene parodies the conversation Turing 
gives in his classic paper on the topic. 

A,t this point Hofstadter himself walks into the scene and 
convinces Turing, Babbage and all the others that they are 
creatures of his own imagination. He, however, is as  unreal 
as any of the other characters of the Dialogue, because he too 
is imagined by the author. The situation resembles a painting 
by Ren6 Magritte titled The Two  Mysteries, in which a small 
picture of a tobacco pipe is displayed with a caption that says 
(to translate from the French) "This is not a pipe." (see Figure 
109.) Floating above the fake pipe is a presumably genuine 
largeir pipe, but of course it too is painted on the canvas. 



Ceci n’est pas une pipe

A caricature of by Magritte (1966)The Two Mysteries



in 1979 by Acidic Books (Hofstadter's publisher being Basic 
Bookls). Here is Hofstadter's comment: "A formidable hodge- 
podge, turgid and confused-yet remarkably similar to the 
present work. Contains some excellent examples of indirect 
self-reference. Of particular interest is a reference in its well- 
annotated bibliography to an isomorphic, but imaginary, book." 

The first problem was to find the smallest positive integer that 
can b'e expressed as  the sum of two squares in two different 
ways. The number is 50, which equals S2 + S2 or l 2  + 72. If 
zero squares are allowed, however, the number is 25, which 
equals S2 + O2 or 32 + 42. If the two squares must be nonzero 
and different, the solution is 65, which equals g2 + l 2  or 72 + 42. 

The second problem was to determine whether or not MU 
is a tlheorem in the M, I and U formal system. A simple proof 
of wh.y MU is not a theorem can be found on pages 260 and 
261 olf Godel, Escher, Bach: an Eternal Golden Braid. 

Hofstadter's GEB took off like a rocket, staying long on the 
best seller lists, and winning the 1980 Pulitzer Prize for gen- 
eral nonfiction. Vintage Books paid $200,000 for paperback 
rights-the largest sum it had ever paid for nonfiction rights, 
and the largest sum Basic Books ever received for such a work. 

R:eviews in 1979 were lavish in their praise. Especially 
noteworthy were reviews by Brian Hayes (New York Times 
Book Review, April 29), Walter Kerrick (Village Voice, No- 
vember 19) and Edward Rothstein (New York Review of Books, 
Dece.mber 6). Other reviews ran in Commonweal, Technology 
re vie:^, Psychology Today, American Scientist, Yale Review, 
American Scholar, and New Republic. 

In an amusing review in the Journal of Recreational Math- 
ematics (14, 1981-82, pp. 52-54), Leon Bankoff observed that 



G E B  has exactly 777 pages, and by using the cipher A =  1, 
B =  2, C= 3, and so on, one discovers that G =  E + B.  

Hofstadter became my successor in writing the Mathe- 
matical Games column in Scientific American, after he changed 
the department's name to Metamagical Themas, an anagram 
of its former title. His columns were reprinted in Metamagical 
Themas: Questing For the Essence of  Mind and Pattern (Basic 
Books, 1985), a work of 852 pages. A few years earlier, Hof- 
stadter and Daniel C. Dennett had edited a marvelous an- 
thology, The Mind's I: Fantasies and Reactions on Self and Soul 
(Basic Books, 1981). At present Hofstadter is professor of 
cognitive science and computer science and technology at the 
Indiana University in Bloomington. 

I must confess that I could never have written my review 
of G E B  had I not had on hand a 33-page analysis of the book 
written by Scott Kim titled Strange Loop Gazette. Kim has since 
obtained his doctorate under Donald Knuth, in the computer 
science department of Stanford University. Kim's beautiful 
book Inversions, containing scores of names and phrases drawn 
in such a way that they magically remain the same when in- 
verted or mirror reflected (or turn into another word or phrase) 
has been reissued by W. H. Freeman. (A book of similar in- 
versions by Hofstadter, titled Ambigrammi, was published in 
Italy in 1987 but has yet to have a U.S. edition.) Kim is now 
working on a book about how to use one's fingers to model 
such things as the skeleton of a cube or tetrahedron, or to 
entwine the fingers to produce such topological structures as 
a trefoil knot. 

I showed how MUIIU could be generated from MI in six 
steps. Several readers lowered this to five, and one reader, 
Raymond Aaron, did it in four: MI to MII (rule 2), to MIIII 
(rule 2), to MIIIIIIII (rule 2), and finally to MUIIU (rule 3). 

I did not give a proof that MU is not a theorem. Here is 
how Hofstadter handled it. Every theorem begins with M, 
which occurs nowhere else. The number of 1's in a theorem is 
not a multiple of 3 because this is true for the axiom MI, and 
every permissible operation preserves this property. There- 
fore MU, whose number (zero) of 1's is a multiple of 3, cannot 
be obtained by the permissible operations. 

Several readers wrote programs for determining Rama- 
nujan numbers that solve the Diophantine equation 
An + Bn = C" + Dn. When n is 3, William J. Butler, Jr.'s pro- 



gram found 4,724 solutions for values less than 101°, of which 
the largest is 

Olf the 4,724 solutions, 26 are triples, the smallest being 

The number of primitive solutions (no common factor of 
the four numbers) is infinite, but the number of triples, Butler 
conjectures, could be finite because their density declines 
rapidliy as the numbers grow in size. 

HIofstadter disclosed in a letter that the phrase "formida- 
ble hodgepodge" in his joke review of GEB (quoted in my final 
paragraph) was taken from a reviewer's comment when Indi- 
ana University considered publishing the book. (The book was 
also rejected, incidentally, by an editor then at W. H. Free- 
man.) Because W. V. Quine, the Harvard philosopher, was 
one of the two reviewers, the chances are fifty percent that 
the phrase was Quine's. "Turgid and confused" (the phrase 
also appears on p. 3 of GEB) is from a comment on Bach's 
style by one of his pupils. In GEB's second printing Hofstad- 
ter added the following to his hoax review: "Professor Geb- 
stadter's Shandean digressions include some excellent ex- 
amples of indirect self-reference." The first four words, with 
the change of name, are from Brian Hayes's New York Times 
revie~w of GEB. 

"Exploring the Labyrinth of the Human Mind." James Gleick, 
in the New York Times Magazine, August 21, 1983. A 
coverstory on Douglas Hofstadter. 

"The Copycat Project." George Johnson, in Machinery of  the 
Mind: Inside the New Science of  Artificial Intelligence, 
Chapter 15. Times Books, 1986. The chapter is about 
Hofstadter's approach to artificial intelligence. 



"The imaginary numbers are a wonderful flight of God's Spirit; they are 
almost an amphibian between being and not being." 

I n a column on negative numbers that is reprinted in my Pen- 
rose Tiles to Trapdoor Ciphers, I described how long it took 
and how painful it was for mathematicians to extend the def- 
inition of "number" to include negative numbers. The same 
process was repeated with even more anguish when mathe- 
maticians discovered the enormous usefulness of what unfor- 
tunately were named imaginary numbers. It is a strange and 
beautiful story. 

Although there were a few early pronouncements that 
negative quantities cannot have square roots (because the 
square of any real number must be positive), the story of 
imaginary numbers really begins in 16th-century Europe. At 
that time mathematicians, in particular Rafael10 Bombelli of 
Italy, found that in solving algebraic problems it was often 



useful to assume that negative numbers did have square roots. 
In other words, just as the equation x+  1 = 0 could be solved 
only by setting x equal to - 1, so x2 + 1 = 0 could be solved 
only by setting x equal to d7. 

The seemingly preposterous assumption that there is a 
square root of -1 was justified on pragmatic grounds: it sim- 
plified certain calculations and so could be used as long as 
"real" values were obtained at the end. The parallel with the 
rules for using negative numbers is striking. If you are trying 
to determine how many cows there are in a field (that is, if 
you are working in the domain of positive integers), you may 
find negative numbers useful in the calculation, but of course 
the final answer must be in terms of positive numbers be- 
cause there is no such thing as a negative cow. 

Throughout the 1 7th and 18th centuries mathematicians 
everywhere kept discovering new uses for the square roots of 
negative numbers. It was Leonhard Euler who in the 18th 
century introduced the symbol i (the first letter of the Latin 
word imaginarius) for d-1. A much-quoted statement at- 
tributed to Euler asserts that such roots are not nothing or 
more than nothing or less than nothing but strictly imaginary 
or impossible. Mathematicians eventually worked out the al- 
gebraic rules for manipulating the "pure imaginaries" (the 
products of i and real numbers) and what later came to be 
called complex numbers (the sums of pure imaginaries and 
real numbers). 

A, complex number has the form a + bi, where a and b can 
be any real numbers. (In this instance the plus sign js not 
meant to indicate addition in the familiar sense; it serves 
mainlly to separate the real part a of the complex number from 
its irrlaginary part bi.) In other words, if a equals 0 and b does 
not equal 0, the complex number is a pure imaginary bi. If b 
equals 0, then bi drops out, leaving the real number a. There- 
fore, the complex numbers include as subsets all the reals 
and all the pure imaginaries, just as the real numbers include 
all th~e integers, fractions and irrationals. In modern termi- 
nology the complex numbers form the mathematical structure 
called a field, whose elements obey all the familiar laws of 
arithmetic. The complex-number field is closed with respect 
to addition, subtraction, multiplication and division, that is, 
applying those operations to any two complex numbers will 
alwa!,s generate another number in the field. There is a sense 
in which the discovery of the complex field completes tradi- 
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tional algebra because it makes possible the solution of any 
ordinary algebraic equation whatsoever. The field also turned 
out to be closed with respect to the operations employed in 
the calculus, and that discovery gave rise to a vast edifice of 
mathematics concerning the functions of a complex variable. 

Many of the advances of modern physics could not have 
been made without the extension of algebra to the complex field. 
The first major scientific use of complex numbers was made 
by Charles Proteus Steinmetz, who found them essential for 
doing efficient calculations on alternating currents. Today no 
electrical engineer could get along without them, and neither 
could any physicist working on the area of air or fluid dynam- 
ics. The numbers also play a basic role in relativity theory 
(where space-time is made symmetrical by the stratagem of 
regarding the three spatial dimensions as real and the time 
dimension as imaginary), in quantum mechanics and in many 
other branches of modern physics. 

Because there are still misgivings about calling i a num- 
ber, it is not uncommon even today for a physicist, a philoso- 
pher or even a mathematician to maintain that i is not really 
a number but is only a symbol for an operation I shall explain 
below. No one has disposed of this verbal quibble more effec- 
tively than Alfred North Whitehead. In the chapter on imag- 
inary numbers in his Introduction to Mathematics he wrote: 

At this point it may be useful to observe that a certain type 
of intellect is always worrying itself and others by discussion 
as to the applicability of technical terms. Are the incommen- 
surable numbers properly called numbers? Are the positive and 
negative numbers really numbers? Are the imaginary numbers 
imaginary, and are they numbers?-are types of such futile 
questions. Now, it cannot be too clearly understood that, in 
science, technical terms are names arbitrarily assigned, like 
Christian names to children. There can be no question of the 
names being right or wrong. They may be judicious or injudi- 
cious; for they can sometimes be so arranged as to be easy to 
remember, or so as to suggest relevant and important ideas. 
But the essential principle involved was quite clearly enun- 
ciated in Wonderland to Alice by Humpty Dumpty, when he 
told her, apropos of his use of words, "I pay them extra and 
make them mean what I like." So we will not bo!her as to 
whether imaginary numbers are imaginary, or as  to whether 
they are numbers, but will take the phrase as the arbitrary name 
of a certain mathematical idea, which we will now endeavour 
to make plain. 



Complex numbers behave so much like ordinary numbers 
when they are added, subtracted, multiplied and divided (ac- 
cording to the rules of the complex field) that most mathema- 
ticians no longer hesitate to call them numbers and regard 
them as having just as much "reality" as negative numbers. 
Even the counting numbers are no more than symbols manip- 
ulated according to the rules of a deductive system. We think 
of them as being more "real" than other numbers only because 
their applications are so close to our practical experience of 
counting fingers, cows, people and so on. What we forget is 
that only the fingers, cows and people are real, not the sym- 
bols to which we turn to count them. In the realm of pure 
mathematics i is just as  real as  2. If we like, we can think of 
2 as nothing more than an operator: a symbol that tells us to 
doublle 1. 

M[ost people are so accustomed to working with real num- 
bers, however, that they feel great relief when they discover 
there is a simple geometrical interpretation of complex num- 
bers. This interpretation, which makes it easy to "see" what 
the numbers are all about, identifies every complex number 
with a point on the Cartesian plane. The first person to make 
this iingenious connection was Caspar Wessel, a self-taught 
Norw~egian surveyor who lectured on it in 1797. A few years 
later the idea was rediscovered by Jean-Robert Argand, a Swiss 
bookk:eeper (who published a small book about it in 1806), 
and independently by the great German mathematician Carl 
Friedrich Gauss. 

As is shown in Figure 110, the basic idea is to view the 
horizontal axis of the Cartesian plane as the real-number line 
and the vertical axis as the line of points that correspond to 
the pure imaginary numbers. In other words, one-to-one cor- 
respondences are established between the real numbers and 
the points on the x axis and between the pure imaginary num- 
bers and the points on the y axis. As I have pointed out, both 
of these sets can be considered subsets of complex numbers, 
and now the remaining complex numbers can be put in one- 
to-one correspondence with the remaining points on the plane. 
To obtain the coordinates of the point associated with a com- 
plex number, one simply measures the real part on the real 
axis and the imaginary part on the imaginary axis. The points 
corresponding to four complex numbers are shown in the il- 
lustration. 

With this interpretation of the complex numbers, it is 
possible to forget entirely the disturbing notion that i is the 



FIGURE 110 Correspondence of complex numbers with points on 
the complex plane 

Imaginary Numbers 

square root of - 1 (which of course it is not in the usual sense 
of taking a square root). Now a complex number can be viewed 
simply as an ordered pair of real numbers: the first number 
measured on the real axis and the second on the imaginary 
axis. In other words, by properly defining the arithmetic op- 
erations for combining these pairs, it is possible to construct 
an algebra of ordered pairs of real numbers that is equivalent 
to the algebra of complex numbers. That opaque phrase, "the 
square root of a negative number," is nowhere encountered in 
this new algebra, although the same idea is of course present 
in a different language and in different notation. If this alge- 
bra of ordered pairs had been developed before complex num- 
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bers, perhaps today no one would remember imaginary num- 
bers and wonder whether or not they exist. 

After the discovery of this geometrical interpretation of 
complex numbers, mathematicians immediately asked whether 
the basic concept could be generalized to three dimensions, 
that it;, to points in space, or, to put it another way, to or- 
dered triples? The answer, alas, is no-not without a radical 
modification of the laws of arithmetic. As Eric Temple Bell 
once put it, the complex field is "the end of a road." It  was 
the Irilsh mathematician William Rowan Hamilton who made 
the first breakthrough into "hypercomplex numbers" when he 
invented quaternions: four-part numbers that combine a real 
number with three imaginaries. The key to manipulating them 
is the fact that they do not obey the commutative law for mul- 
tiplicakion: the rule stating that for any two numbers a and b, 
ab equals ba. 

The idea of dropping this law came to Hamilton in 1843 
as he .was strolling with his wife at dusk along the Royal Canal 
in Dublin. He was so elated that he stopped to scratch the 
basic formula on a stone of Brougham (pronounced "broom") 
Bridge. The original graffiti weathered away in Hamilton's time, 
and now the bridge is known only as the one that crosses 
Broombridge Street. There is a tablet in the stone commem- 
orating the great event, however, and in 1943, a century after 
Hamilton's revelation, Ireland honored it with a postage stamp. 
Quaternions do not form a field (their structure is called a 
division ring), but the algebra of quaternions is equivalent to 
an algebra of ordered quadruplets and is often applied today 
as a part of three-dimensional vector theory. The discovery of 
the algebra of quaternions marked the beginning of modern 
abstract algebra, in which all kinds of "numbers", much 
stranger than the complex numbers, can be defined. 

Because of the correspondence between complex num- 
bers and points on the Cartesian plane, when the plane is 
used iln this way it is called the complex plane. (It is also 
called the z plane, for the unspecified complex number z equals 
a+ bi, and sometimes an Argand diagram, because for many 
decades no one knew about Wessel's earlier discovery.) I shall 
not go into the details of how complex numbers can be added, 
subtracted, multiplied and divided by geometrical diagrams 
on the complex plane. Readers who do not already know the 
rules governing these operations can find them in any elemen- 
tary algebra textbook that covers complex numbers. A brief 
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explanation of multiplication by i, however, is necessary to intro-
duce an elegant theorem about the roots of numbers.

To multiply a number on the complex plane by i, one takes
the radius-vector line to the point corresponding to the number
(the line from the origin of the plane to the point) and rotates it
90 degrees counterclockwise; the new end point of the vector cor-
responds to the product of the number and i. It is in such a sense
that i can be viewed as an operator. To understand this idea, con-
sider what happens when i is raised to various powers: i raised to
the first power of course equals i, and it is easy to see that i2 equals
–1, i3 equals –i and i4 equals 1. This four-step cycle repeats end-
lessly: i5 equals i, i6 equals –1 ,i7 equals –i, i8 equals 1 and so on. All
even powers of i equal 1 or –1, and all odd powers equal i or –i.

Figure 111 shows how these observations apply to the multi-
plication of a number (in this case pi, or π) by i. The point corre-
sponding to π on the positive side of the x axis is located and
moved 90 degrees counterclockwise around the circle of radius π
centered at the origin of the plane. An arrow shows how the end
point of this operation is the pure imaginary, πi, which lies on the
upper part of the y axis. Multiplying π by i2, then, is equivalent to
multiplying it twice by i: the point corresponding to π is moved
180 degrees around the circle and ends up at the point –π on the
x axis, or real-number line. Similarly, multiplying π by i3 effects a
turn of 270 degrees, ending at the point –πi on the lower part of
the y axis; multiplying π by i4 is the same as multiplying π by 1,
and so we are back to π. We can continue in the same way with all
the higher powers of i. Each next-highest power takes us another
quarter turn counterclockwise around the circle.

The inverse operation of multiplication by i is division by i:
moving clockwise 90 degrees around the center origin of the
plane. In other words, for any complex number, draw a radius-vec-
tor line from the origin to the point that represents the number.
Then, to multiply the number by i, rotate the vector 90 degrees
counterclockwise (see Figure 112), and to divide it by i, rotate the
vector 90 degrees the other way. (As a joke, a friend of mine once
suggested that i times infinity equals 8 because multiplying by i
turns the infinity sign upright.)

With this interpretation of multiplication, it turns out that
if complex roots are counted, every nonzero number (real or
complex) has exactly n nth roots. In other words, every num-



FIGUFtE 11 1 How pi is multiplied by i, i2, i3 and i4 

ber has two square roots, three cube roots, four fourth roots, 
five fifth roots and so on. It follows that every cubic equation 
has three solutions, every fourth-degree equation has four so- 
lutions and so on, and when we diagram the roots of individ- 
ual nu.mbers on the complex plane, an unexpected and de- 
lightful property is revealed. The n points corresponding to 
the nth roots all lie, separated by equal distances, on a circle 
whose origin is at  the center of the plane. In other words, the 
points mark the corners of a regular n-sided polygon. For ex- 
ample, Figure 113 shows the locations of the six sixth roots 
of 729. If, as  in this instance, the number is real and has an 
even number of roots, two corners of the polygon will lie on 
the real axis. If the number is real and has an odd number of 
roots, only one corner of the polygon will lie on the real axis. 



FIGURE 1 12 Multiplying complex number 3 + 2i b y  i, i2, i3 and i4 

Imaginary Numbers 

If n is a rational number, not an integer, there is a finite 
number of roots that correspond to points on the circle. If n 
is irrational, the roots still lie on the circle but are infinite in 
number as you go around the circle forever. Given all real 
numbers, their roots catch all points on the circle, but for a 
particular irrational, an infinity of "holesw-points not cov- 
ered-remain. 

Besides being essential in modern physics, the complex- 
number field provides pure mathematics with a multitude of 
brain-boggling theorems. It  is worth keeping in mind that 
complex numbers, although they include the reals.as a sub- 
set, differ from real numbers in startling ways. One cannot, 
for example, speak of a complex number as being either pos- 
itive or negative: those properties apply only to the reals and 
the pure imaginaries. It is equally meaningless to say that one 
complex number is larger or smaller than another. 

It  had been known before Euler that the product of any 
two pure imaginaries is a real number, but it was Euler who 
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FIGURE 113 The six sixth roots of 729 

first slhowed that ii is also real. I t  is equal to ecTt2,  an irra- 
tional number with the decimal expansion of .2078795763. 
. . . Actually this number is only one of an infinity of values, 
all rea.1, of ii. They are given by the formula e-"t2'2k" , where 
k is any integer, so that when k equals 0,  the principal value 
given above is obtained. The ith root of i is also a real num- 
ber, th.e principal value of which is eTt2, or 4.8104773809. . . . 

There are many other formulas in which i is related to the 
two best-known transcendental irrationals, e (the natural ba- 
sis of 1.ogarithms) and r. The most famous formula, developed 
by Euller but based on an earlier discovery, is d"+ 1 =0, which 



Edward Kasner and James Newman call in their book Math- 
ematics and the Imagination "elegant, concise and full of 
meaning." They also quote a remark by Benjamin Peirce, the 
Harvard mathematician who was the father of Charles Sand- 
ers Peirce, about the formula: "Gentlemen," he said, after 
writing the formula on a blackboard, "that is surely true, [but] 
it is absolutely paradoxical; we cannot understand it, and we 
don't know what it means, but we have proved it, and there- 
fore we know it must be truth." 

Well, the formula is not quite without meaning. Rewritten 
as ei"= - 1, it can be diagrammed on the z plane as the limit 
of the infinite sequence: 1 + ni +(ni)2/2! +(niY/3! +(71i)~/4!. . . . 
(The exclamation point is the factorial sign: n! equals 1 x 2 x 3 x 
. . . xn.)  The terms of this sequence are diagrammed as an 
infinite set of points on a counterclockwise spiral of straight 
lines that strangles the - 1 point on the real axis. 

George Gamow, seeking to dispel the mystery of complex 
numbers, once devised this puzzle. An old parchment, de- 
scribing the location of buried pirate treasure on a desert is- 
land, gave the following instructions. On the island there are 
only two trees, A and B, and the remains of a gallows. Start 
at the gallows and count the steps required to walk in a straight 
line to tree A. At the tree, turn 90 degrees to the left and then 
walk forward the same number of steps. At the point where 
you stop, drive a spike into the ground. Now return to the 
gallows and walk in a straight line, counting your steps, to 
tree B. When you reach the tree, turn 90 degrees to the right 
and take the same number of steps forward, placing another 
spike at the point where you stop. Dig at the point exactly 
halfway between the spikes, and you will find the treasure. 

A young adventurer who found the parchment with these 
instructions chartered a ship and sailed to the island. He had 
no difficulty finding the two trees but, to his dismay, the gal- 
lows was gone and time had abolished all traces of where it 
had stood. Not knowing the location of the gallows, he could 
see no way of finding the treasure and so returned empty- 
handed. Gamow points out that if the young man had been 
familiar with the technique of manipulating numbers on the 
complex plane, he could have found the treasure with ease. 
Readers who know the basic rules for diagramming complex 
numbers should be able to solve this problem. 
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George Gamow's problem of finding buried treasure can be 
solvedl as  follows even if one does not know the location of 
the gallows. Draw a straight line through trees A and B, as is 
shown in Figure 114, and call the line the real axis of the 
complex plane. Then through the point midway between the 
trees, draw the perpendicular imaginary axis. Consider that 
tree A is at  the point representing the real number 1, and tree 
B is at the point representing the real number - 1. Choose 
any point as the location of the gallows. 

4 Burled treasure 

First so~ke  

/ 

FIGURE 114 Solution to the buried-treasure problem 



Now, if the instructions on the parchment are followed, 
it becomes clear that, no matter where the gallows stood, the 
treasure will be a t  +i on the imaginary axis! This observation 
can be proved easily by applying the rules for the manipula- 
tion of numbers on the complex plane. The problem appears 
in the second chapter of Gamow's popular book One Two 
Three-Infinity. Readers who want to check the proof will find 
it explained clearly there. 

Imaginary Numbers 

Because every complex number corresponds to a vector on 
the plane, Gamow's problem can be solved by vector geome- 
try without using complex numbers. Many readers have sent 
me such solutions. Keith Raybourn cracked the problem by 
first assuming it had a solution. Since we are not told where 
the gallows used to be, it follows that its position could have 
been anywhere. One can then locate the treasure by selecting 
an aribitrary spot for the gallows and following instructions. 

F. V. Pohle, of Adelphi University, sent me a copy of a 
1977 West German stamp honoring Gauss that depicts four 
numbers on the complex plane (see Figure 115). Enlarged, it 
would make a handsome mathematical poster. 

As far as  I know, the last physicist to oppose the use of 
complex numbers was the eccentric Swiss physicist Baron 
Stueckelberg (see the bibliography for an article about him), 
who died in 1984. He is almost unknown today, yet he was 
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FIGURE 115 This German stamp, honoring 
Gauss, shows the location of four points on the 
complex plane 



the first to discover the strong force and made several notable 
contr:ibutions that led to Nobel prizes by others. Stueckelberg 
spent years trying to persuade his colleagues to stop using 
imaginary numbers in the equations of relativity and quantum 
theory. It is true that physicists could get by, if they had to, 
by abandoning imaginary numbers. They could even dispense 
with irrational numbers because every measurement of a 
magnitude is rational. Irrational constants, such as pi and e 
and tlhe square root of 2, can always be expressed to a finite 
number of decimal places that are adequate for any calcula- 
tion. But dropping the use of irrationals and imaginary num- 
bers would be as foolish and inefficient as trying to dispense 
with negative numbers. 
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*d t l  Some ACCI en a 
Patterns 

"A mathematician, like . . . a poet, is a maker of patterns." 

-G. H. HARDY, 
A Mathematician's Apology 

re the beautiful, orderly patterns of pure mathematics discov- 
ered or created by the human mind? The answer to the ques- 
tion depends on one's philosophy of mathematics. In either 
case, patterns also play an important part in all the fine arts, 
and nature displays a fantastic variety of patterns-atomic 
structures, snowflakes, spiral galaxies and so on-that dem- 
onstrate a collusion between mathematical and natural laws. 
In all these domains, however, patterns can arise completely 
by chance, as  a cloud can assume the shape of a camel. In 
this chapter I shall take a not so serious look first at  some 
accidental patterns involving the numbers pi and e and then 
at some whimsical instances of accidental poetry. 

Pi is the best-known of the transcendental numbers: those 
irrational numbers that are not roots of ordinary algebraic 



equal-ions. Given a sufficient amount of computing time, one 
can precisely calculate the decimal expansion of pi to any fi- 
nite length, so in this sense the expansion is not random. 
Viewed as a sequence of digits, however, it is as ugly and 
disordered as any randomly generated list of numbers. No one 
has ever found a pattern in the expansion of pi that cannot be 
explained by pure chance. Nevertheless, this disheveled se- 
quence, which was calculated in 1988 in Japan to 201,326,000 
decimal digits, continues to haunt and fascinate numerolo- 
gists. It is not surprising that with diligent searching one can 
discover all kinds of accidental patterns there. Dr. Matrix has 
pointed out a few of them, as I have reported in previous books. 
There are other pi curiosities. For example, on the title page 
of Dr. Matrix' 10-volume commentary on the King James Bi- 
ble h~e quotes Job 14:16: "Thou numberest my steps" (see 
Chapter 18 of The Magic Numbers of Dr. Matrix). Here Dr. 
Matri~x apparently overlooked a remarkable coincidence: "Job" 
has tlhree letters, and adding 14: 16 gives 3.14 16, or pi rounded 
to the fourth decimal place. 

Starting with the 710,lOOth decimal digit of the expan- 
sion of pi there is a surprising run of seven consecutive 3's: 
. . . 353733333338638. . . . (Note that the sequence is pre- 
ceded by a 7 and followed by an 8.) Such stupendous ex- 
pansions became possible only recently, as a result of the de- 
sign of faster algorithms for computer multiplication and 
the development by Eugene Salamin of a new formula for cal- 
culating pi. By adding some clever twists to Karl Friedrich 
Gauss's method of calculating elliptic integrals, Salamin ob- 
tained a formula for pi that converges with unusual rapidity. 
Interested readers will find the formula explained in Salam- 
in's 1976 paper cited in the bibliography. 

The October 1965 issue of Eureka, a journal put out an- 
nually by mathematics students at  the University of Cam- 
bridge, points out a strange pattern in the first seven decimal 
digit:; of pi. The pattern combines the three mystic numbers 
of medieval numerology (1 for the Godhead, 3 for the Trinity 
and 17 for the day God rested) with the first three perfect num- 
bers (the smallest integers equal to the sum of all their divi- 
sors, including 1) as follows: the first decimal digit of pi is the 
smallest perfect number 1, the first three decimal digits (14 1) 
add up to the second perfect number (6) and the first seven 
decimal digits (1415926) add up to the third perfect number 
(28). Moreover, 1 is the "sum" of the first counting number, 6 
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is the sum of the first three counting numbers (1 + 2 + 3), and 
28 is the sum of the first seven counting numbers. These are 
the only three numbers that are simultaneously the sum of the 
first n counting numbers and the sum of the first n decimal 
digits of pi. 

I have written before about that extraordinary fraction 3551 
113, which gives the value of pi to six decimal places. 
G. Stanley Smith discovered that 53313 12 is a good approxi- 
mation of the square root of pi, 1.7724538509 . . . , giving 
it correctly to four decimal places. Even more remarkable, 
Smith's fraction is almost 35511 13 with the numerator and de- 
nominator written backward. Note that the denominator of 
Smith's fraction begins with 3 1. The cube root of 3 1 gives pi 
to three decimal places. The square root of 9.87 (a number 
consisting of three consecutive digits in reverse order) is still 
better. It gives pi rounded to four decimal places. 

The second most famous transcendental number is the base 
of natural logarithms, e, which has been the subject of almost 
as much numerology as pi. The expansion of e is 2.7 1828 1828. 
. . . The repetition of 1828 in this sequence means abso- 
lutely nothing. And the fact that the 16th and 17th decimal 
digits of pi and e are the same (23) is equally meaningless. 
Douglas R. Hofstadter has discovered an even more amazing 
coincidence: if the reciprocals of the first eight counting num- 
bers are added (taking each one in decimal form and rounding 
up to the third decimal place when the fourth-place digit is 
greater than 5), the result is 2.7 18, or e to three decimals (see 
Figure 1 16). 

FIGURE 116 Do these fractions add up to e? 



Considering the fundamental nature of pi and e, it is not 
surprising that there are many simple, meaningful formulas 
that relate them, such as the Euler formula. As someone once 
observed, "You can have your pi and e at it too." It is also not 
surprising, however, that if one searches long enough, it is 
possible to find striking but meaningless relations between 
the two constants. One of the best was discovered recently 
by R. G. Duggleby, a biochemist at  the University of Ottawa. 
He found that the sum of pi to the fourth power (97.40909 
. . .) and pi to the fifth power (306.01968 . . .) is e to the 
sixth power (403.42879 . . .) correct to four decimal places! 

Proving which is larger, pi to the power of e or e to the 
power of pi, is an old but still intriguing problem. (Obviously 
the proof may not involve the calculation of the two values, 
which are quite close: re equals 22.4591577 . . . , and eR 
equals 23.1406926. . . .) Dozens of proofs have already been 
published. One of the shortest is based on the fact from ele- 
mentary calculus that x1lX has a maximum value when x equals 
e. Hence elie is greater than r"". Multiplying each exponent 
by re and canceling yields the inequality eR> re. Incidentally, 
e" has; been proved to be transcendental, but it is not yet known 
whether re  is rational or irrational. It is not even known 
whether the product ( r e )  and the sum ( r + e )  of the numbers 
are rational or irrational. 

If x is larger than y, then all positive rational solutions to 
the equation xY= yx are given by the formulas x =  (1 + lln)"+ 
and y = (1 + lln)", where n is any positive integer. Setting n as 
being; equal to 1 generates the only solution in positive inte- 
gers: 42 = 24. There is one other solution in integers. Can you 
find it? 

Figure 1 17 shows the graph of the equation xY = y", when 
x ancl y are positive real numbers. The straight line gives all 
the solutions when x and y are equal, and the curve (which 
looks like a hyperbola but is not) gives all the solutions when 
x ancl y are not equal. On one side of the axis of symmetry x 
is greater than y, and on the other side it is less than y. The 
asymptotes of the curve are shown as broken lines. This func- 
tion has been generalized to negative numbers, complex num- 
bers and even transfinite numbers. 

110 the first n digits of pi (which form the sequence 3, 3 1, 
314, 3 141, . . .) ever make a perfect square? This curious 
quesl.ion is discussed by Wolfgang Haken in his 1977 paper. 
(The four-color theorem was proved in 1976 by Haken and 



FIGURE 1 17 Graph of xY = yx  

Pi and Poetry: Some Accidental Patterns 

Kenneth Appel.) Consider the conjecture that the answer is 
no, the first n digits of pi never yield a perfect square. Haken 
believes this conjecture is true but not provable in standard 
set theory because "the decimal expansion of the transcen- 
dental number pi has 'practically nothing' to do with perfect 
squares." Haken estimates the probability that the conjecture 
is false to be .000000001. 

Another bizarre question about pi was raised in a letter 
from George Shombert, Jr., of Beaver, Pa. If the decimal ex- 
pansion of pi is truly patternless, then somewhere in the infi- 
nite sequence of digits there must be the first n digits of e. 
Similarly, it must be possible to find the first n digits of pi in 
the expansion of e. This observation set me wondering. Is it 
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possible to prove that there is no point inside pi where e be- 
gins and continues to infinity, or vice versa? Is it possible that 
each of these numbers contains all of the other, as in 3.141 
. . . 2718 . . . 3141 . . . 2718 . . . ? The answer to this 
last question is definitely no. Do you see why? 

One of the most incredible accidental patterns involving 
pi wa.s discovered a few years ago by T. E Lobeck of Minne- 
apolis. He started with a conventional 5-by-5 magic square 
shown at the left in Figure 11 8, and then substituted the nth 
digit of pi for each number n in the square. The result is the 
matrix shown at the right in the illustration. The sum of 
the numbers in each row is shown to the left of the row, and 
the sum of the numbers in each column is shown at the bot- 
tom of the column. Amazingly, every column sum duplicates 
a row sum. 

It  may be hard to believe this pattern is sheer coinci- 
dence. Even mathematicians can forget that if enough people 
doodle long enough with random sequences of digits, it is highly 
probable they will find highly improbable patterns. It is be- 
cause most people fail to grasp this basic notion that they are 
unduly impressed when, out of the billions upon billions of 
possible ways coincidences can arise in daily life, one does 
occur. As Edgar Allan Poe wrote at the beginning of his story 
"The Mystery of Marie Roget": "There are few persons, even 
among the calmest thinkers, who have not occasionally been 
startled into a vague yet thrilling half-credence in the super- 

FIGURE 118 Traditional magic square (left) is transformed by pi 
(right) 
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natural, by coincidences of so seemingly marvelous a character 
that, as mere coincidences, the intellect has been unable to 
receive them." 

Just as  it is not surprising to find patterns in disorderly 
sequences such as the expansions of pi and e, so it is not sur- 
prising, considering the vast quantity of word sequences that 
are published as prose, to find examples of accidental verse. 
I am referring not to free verse but to verse with an orderly 
pattern of meter or rhyme, preferably both. It is trivially easy 
to take a passage of purple prose and break it into lines that 
give it the semblance of poetry. That has often been done with 
passages from the King James Bible and even from the novels 
of Charles Dickens. When William Butler Yeats compiled The 
Oxford Book of Modern Verse, he included a "poem" on the 
Mona Lisa he had found in an essay by Walter Pater. Simi- 
larly, in 1945 John S. Barnes published a book called A Stone, 
A Leaf, A Door, which consists of prose passages from the 
novels of Thomas Wolfe presented in the form of verse. 

About a dozen years ago there was a minor flurry of inter- 
est in "found poetry" comparable to the enthusiasm for such 
faddish "found art" as pieces of driftwood. At that time the 
British weekly The New Statesman ran a competition for the 
best found poems. Simon and Schuster published Ronald 
Gross's Pop Poems, a collection of free verse Gross had found 
in cookbooks, advertisements, insurance policies, tax forms, 
newspaper obituaries and other equally unlikely places. In 
Canada, several anthologies of found free verse were pub- 
lished by the poet John Robert Colombo. In John Updike's 
Telephone Poles and Other Poems, you will find a "poem" he 
came on in the prose of James Boswell's Life of Samuel John- 
son. 

In addition to excluding found free verse from considera- 
tion, I shall exclude the poems authors sometimes hide inten- 
tionally in their prose. For example, Washington Irving con- 
cealed 22 lines of iambic pentameter in the first paragraph of 
the sixth book of his History of New York, written under the 
pseudonym Diedrich Knickerbocker. (The poem begins: "But 
now the war-drum rumbles from afar. . . ."I Lewis Carroll 
liked to write letters to little girls that appeared to be prose 
but were actually rhymed and in meter, and his apparent prose 
introduction to a long poem, "Hiawatha's Photographing," has 
the same tom-tom beat as the poem. James Branch Cabell oc- 
casionally concealed poems in his novels, and F .  Scott Fitz- 



gerald's This  Side o f  Paradise has many italicized passages of 
word painting that turn out to be rhymed poems when they 
are read properly. Now and then a journalist will write a 
newspaper story in verse and present it as  prose. For in- 
stance, John Canaday once reviewed an art show in The  New 
York  Times (December 27,  1964) with a full page of prose 
that turned out to be made up entirely of rhymed couplets. 

By accidental verse, then, I mean lines that have the un- 
intentional structure of rhymed poetry. The most famous En- 
glish example is in William Whewell's An Elementary Treatise 
o n  lMechanics (1819). It came to light during a dinner in 
Whewell's honor at  Cambridge, where Whewell was Master 
of Trinity College. Adam Sedgwick, a geologist, rose and asked 
if anyone knew who had written the following stanza: 

And hence no force, however great, 
Can stretch a cord, however fine, 
Into a horizontal line 

That shall be absolutely straight. 

Although the same stanza form had been used by Tenny- 
son in "In Memoriam," no one could identify those particular 
lines. Sedgwick then revealed that he had quoted from page 
44 of the first volume of Whewell's treatise, taking the liberty 
to polish the last line, which originally read, "Which is accu- 
rately straight." Whewell was so unamused that he altered 
the passage to eliminate the verse in the next edition of the 
bool~. He later published a volume of poetry called Sunday 
Thoughts and Other Verses, but his accidental verse is the only 
one he wrote that is still remembered. 

A splendid specimen of chance doggerel is found in Lin- 
coln's second inaugural address: 

Fondly do we hope, 
Fervently do we pray, 
That this mighty scourge of war 
May speedily pass away. 

Yet, i f  it God wills 
That it continue until . . . 

William Harmon, in his first book of poetry, Treasury Hol- 
iday, points out that the Declaration of Independence begins 
with the two rhyming words "When in," the Constitution be- 
gins "We the," and the Gettysburg Address begins "Four- 
sco,re." Harmon began his second book of poetry with "We 



see," and his introduction to the forthcoming Oxford Book of 
American Light Verse begins "Those 0's." Dickens' Bleak House, 
Harmon reminds me, starts with the two-syllable sentence: 
"London." 

There are countless other examples of accidental verse in 
all major languages. Here are two I stumbled on myself in The 
New York Times. James Thurber ended his article "The Qual- 
ity of Mirth" (February 2 1, 1960) as  follows: 
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If  they are right and we are wrong, 
I shall return to the dignity 
of the printed page where it may be 

That I belong. 
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And the first paragraph of James Reston's column "Mr. 
Ford's Last Chance" (January 16, 1976) ends with 

This is the sound of prominent men, 
Prodded by their wives, 

Cleaning out the attic 
And fleeing for their lives. 

A kind of inverse of the unintended poem is the planned 
poem that, as the result of an accident of language, acquires 
a flaw that spoils a line. Consider this uncouth quatrain from 
"Daisy," an otherwise lovely lyric by Francis Thompson: 

Her beauty smoothed earth's furrowed 
face! 

She gave me tokens three:- 
A look, a word of her winsome mouth, 

And a wild raspberry. 

And finally, the first version of Robert Frost's "Maple" 
contained the line, "Her mother's bedroom was her father's 
still." After an alert proofreader caught the unintended mean- 
ing, Frost changed the last word to "yet." 

Readers were asked to find a solution in integers of xY= yx, 
with x greater than y, other than the familiar 4, 2. The second 
solution is -2, -4. 



Another exercise was to prove that it is impossible for the 
deciimal expansions of pi and e to contain all of each other. If 
it were possible then, after a finite number (x )  of decimal dig- 
its i11 pi, e would begin, and after a finite number ( y )  of deci- 
mal digits in e, pi would begin. In that case both pi and e 
would be repeating decimal fractions, each with a period equal 
to x- t  y. All repeating decimal fractions are rational, however, 
and since pi and e are known to be irrational, the assumption 
must be false. 
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More on Poetry 

I n giving instances in the previous chapter of verse intention- 
ally disguised as  prose, of prose containing accidental verse, 

=and of verse damaged by accidental meanings, I barely raked 
the surface. Moreover, I left out many amusing examples be- 
cause Scientific American is a family magazine. 

Regarding intentionally concealed poetry, William Har- 
mon, a poet and professor of English literature at  the Univer- 
sity of North Carolina, called my attention to the title page 
and introduction, both concealing rhyme and meter, of James 
Russell Lowell's A Fable for Critics (1849). His kinswoman 
Amy Lowell later used the same whimsical device for the title 
page and introduction of A Critical Fable ( 1922). 

In one of his essays in The Sewanee Review (reprinted in 
paperback, Uneeda Review, 23I/z Anniversary Issue (Nick Lyons 



Books, 1984, p. 201, Harmon added a footnote that seems to 
be in prose. Read aloud, it turns into the following limerick: 

There once was a Thompson named Stith 
Who reduced every item of myth, 
Song, fable, and mummery 
To a seven-word summary: 
No  extraneous details, just pith. 

Several readers reminded me of Mark Twain's story 
"Pun.ch, Brother, Punch," based on an 1874 poem by Isaac H. 
Bron~ley, in turn said to be based on a sign that Bromley saw 
on a horse-drawn streetcar: 

The conductor when he receives a fare 
Will punch in the presence of the passinjare, 
A blue trip-slip for an 8-cent fare, 
A buff trip-slip for a 6-cent fare, 
A pink trip-slip for a 3-cent fare, 
All in the presence of the passinjare. 
Punch, brother, punch, punch with care, 
Punch in the presence of the passinjare. 

(Ither readers recalled the lyrics of a song, sung to the 
tune of Humoresque, and apparently based word for word on 
a sign that once hung in Pullman car washrooms: 

Passengers will please refrain 
From Rushing toilets while the train 
Is standing in the station, . . . . 

The last line has such variant terminations as "Ah, how 
true!" "The hell with you!" and "I love you." 

(In the copyright page of The Works of Max Beerbohm are 
the lines: "London: John Lane, THE BODLEY HEAD. New 
York: Charles Scribner's Sons. " In an essay on Beerbohm, John 
Updike tells us that Max had scribbled below these lines: "This 
plain announcement, nicely read, iambically runs." Updike 
comments: 

The effortless a-b-a-b rhyming, the balance of "plain" and 
"n:icely," the need for nicety in pronouncing "Iambically" to 
scan-this is quintessential light verse, a twitting of the star- 
kest prose into perfect form, a marriage of earth with light, and 
quite magical. Indeed, were I a high priest of literature, I would 
have this quatrain made into an amulet and wear it about my 
neck. for luck. 
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J. A. Lindon, a British writer of humorous verse, sent me 
four specimens of unintended verse which he said he had found 
in a Manual of Practical Anatomy, by someone named Cun- 
ningham: 

Scrape the fatty tissue 
From the popliteal surface 
O f  the femur with the handle o f a  knife 

Put the grove i n  deep 
And its margins meet, 
And the vessels are therefore enclosed i n  the gland. 

It is bounded o n  the left 
B y  a deep and narrow vertical cleft. 

For it has to cross the median plane 
T o  reach the beginning o f  the portal vein. 

Lindon also sent the following items, with apologies for 
not having the first names of authors: 

When parallel rays 
Come contrary ways 
And fall upon opposite sides. 

Dr. Smith's Optics. 

. . . . is called into play to steady the wrist 
When the hand grasps the object or makes a fist. 

-Grant, A Method o f  Anatomy 

Herman M. Frankel passed along this gem from Werner 
Heisenberg's Physics and Philosophy: 

Every word or concept 
Clear as  it may  seem to be, 
Has only a limited range 
Of applicability. 

Arthur Koestler, in Roots of Coincidence, quotes a passage 
from another physicist that can be read as follows: 

Particles o f  
Imaginary mass, 
Interacting together 
L i ke  a frictionless gas. 

On October 2 1, 1979 (my birthday, incidentally), the New 
York Times published my letter: 



Until I read your account of the 
Florida voting results (Oct. IS), I 
hadn't known that Jody Powell likes to 
speak in rhymed doggerel. Here is his 
comment, no word or punctuation mark 
altered: 

They put in 
The best they had 
And we put in 
The best we had, 
And we beat them 
And beat them bad. 

To which I add: It makes me sad, 
to see the ways, we're being had. 

Ehgene McCarthy, one-time candidate for president, was 
quoted in the New York Times (November 7 ,  1968) as  remark- 
ing, with reference to Richard Nixon, "Under the shadow of 
his wings, we can think of other things." 

John Leonard ended his "Critic's Notebook" column in the 
New York Times (August 7 ,  1980) with this quatrain: 

After a leisurely lunch, he forgot to look 
Both ways while crossing the rue. 
There may be a laundry truck 
With your name on it, too. 

Marvin Minsky, in his Society of Mind, item 3.5 ,  wrote: 
"A real child can go to bed-yet still build towers in its head." 

Sheldon Glashow, the physicist, in Chapter 14 of his 
autobliography Interactions, unintentionally warbles: 

They will tell you 
Why copper is red, 
Why the sky is blue, 
How a candle burns, 
And what makes dew. 

Hans Moravec, in his book on artificial intelligence, Mind 
Chilclren, dedicates the book this way: 

In memory of 
My father, who taught me to tinker, 
To my mother who taught me to read, 
To Ella who made me complete. 

E3eneath this I scribbled, "And to software that gave me 
a creed." 
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William Henry, in a Time cover story about gossip (March 
5, 1990) ended a paragraph with: 

The rockies may tumble, 
Gibralter may crumble, 
They're only made of clay. 
But gossip is heaven sent 
And here to stay. 

As a boy I recall my father coming home from his office 
one afternoon and telling us that he had been to the post of- 
fice with his accountant to check the contents of the mail box. 
"Anything there?" dad asked. The accountant replied with an 
unintended jingle in the same meter as the last line of "Punch, 
Brother, Punch": "Nothing but a notice that the box rent's 
due." 

My wife Charlotte spotted the next two items: 

The stars start to fade, 
And soon the sun is out, 
Baking the corn and soybeans 
And anyone not in the shade. 

-from a New York Times (August 
18, 1972) story about midwest 
farms. 

Neither snow nor rain, nor heat, 
Nor gloom of night, 
Stops the mail from getting through, 
But potholes might. 

-from an AP dispatch (May 20, 
1986) about potholes in 
Windsor Heights, West Vir- 
ginia. 

Brian Agran found a bit of unintended doggerel at the end 
of the first paragraph the previous chapter: 

Some accidental patterns 
Involving the numbers pi and e, 
And then some whimsical instances of 
Accidental poetry. 

In the category of unintended meanings that turn serious 
poetry into farce, the classic example occurs near the end of 
Robert Browning's Pippa Passes: 



But at night, brother howlet, 
over the woods 

Toll the world to thy chantry; 
Sing to the bats'sleek 

sisterhoods 
Full complines with gallantry: 
Then, owls and bats, 
Cowls and twats, 
Monks and nuns, in a cloister's 

moods, 
Adjourn to the oak-stump pantry! 

Twat ,  then pronounced with a flat a, has never had any 
meaning except the one it has now, but when Browning came 
across it in a book he took it to be the name of something 
worn by nuns. The fact that he never removed it from his fa- 
mous poem suggests that no one had the courage to explain 
the mistake to him! 

Other lines in Browning's poetry are almost as uninten- 
tionally funny. In "The Flight of the Duchess," for instance, 
he speaks appropriately of Paris as  "The Land of Lays." 

Here are the first two stanzas of Emily Dickinson's unfin- 
ished Poem 566, in T h e  Complete Poems o f  E m i l y  Dickinson: 

A Dying Tiger - moaned for Drink - 
I hunted all the Sand - 
I caught the Dripping of a Rock 
And bore it in my Hand - 

His Mighty Balls - in death were thick - 
But searching - I could see 
A Vision on the Retina 
Of Water - and of me - 

I was stunned for a moment before I realized that Emily 
was r~eferring to the tiger's mighty eyeballs. Her well known 
line, "There is no frigate like a book," was called to my atten- 
tion by the poet George Starbuck, whose elegant poems often 
swarm with clever word play. 

A surprising clerihew, reprinted with adorning sketches 
by Gilbert Chesterton, is on page 49 of The  First Clerihews 
(Oxfoird Press, 1982), by E.  Clerihew Bentley and his friend 
Chesterton, who surely did not realize how it could be mis- 
interpreted: 

Mr. Oscar Wilde 
Got extremely riled. 



He ejaculated, "Blow me 
If I don't write 'Salomt. ' " 

Mom on Poetry 

A line in Milton's Paradise Lost (Book 4) refers to Adam's 
"fair large front." Henry Christ, who teaches high school lit- 
erature in Florida, tells me that whenever he reads from Alfred 
Noyes's "The Highwayman" the line, "One kiss, my bonny 
sweetheart, I'm after a prize tonight," his students break into 
giggles. 

"McAndrews's Hymn," by Rudyard Kipling, contains these 
startling lines: 
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Twas on me like a thunderclapit racked me through an' 
through- 

Temptation past the show o' speech, unnameable an' 
n m -  

The Sin against the Holy Ghost?. . . An' under all, 
our screw. 

Verbatim, a British journal devoted to linguistics, ran an 
article in its Winter, 1989, issue titled "Red Pants," by Rob- 
ert Sebastian. It  is devoted entirely to unintended meanings 
in prose and poetry. I will cite only some verse specimens. 

Francis Thompson, explaining how "day's dying dragon" 
colors a sunset sky, in his poem "A Corymbus for Autumn," 
wrote: "panting red pants into the west." 

"In this trouser category," Sebastian writes, "Thompson 
must share the limelight with Coleridge" who wrote in "Kubla 
Khan," "As if this earth in fast thick pants were breathing." 
And Shelley, in "Epipsychidion," tells how 

. . . . the slow, silent night 
Is measured by the pants of their calm deep. 

Closely related to pants are some lines in Milton's Para- 
dise Lost (Book 1, lines 236-7) which tell how Mount Aetna 
will thunder: 

And leave a singed bottom all involved 
With stench and smoke. 

Today's pejorative meaning of pansy tends to ruin such 
lines as "With rue and the beautiful Puritan pansies" (Poe, in 
"For Annie"). A current meaning of gay similarly spoils such 
lines as  "Why is my neighbor's wife so gay?" (Chaucer, Pro- 
logue of the Wife of Bath); "If nature made you so grateful, 
don't get gay" (William Vaughn Moody, "The Menagerie"); 



"Never lacked gold, and yet went never, gay" (Shakespeare, 
Othello, Act 11, Scene 1); and "They know that Hamlet and 
Lear are gay" (William Butler Yeats, "Lapis Lazuli"). 

T'he reader can look at Sebastian's article for even fun- 
nier examples from classic prose. For unintended pornogra- 
phy in the Sherlock Holmes canon, see John Bennett Shaw's 
celebrated lecture "To Shelve or to Censor," available, alas, 
only i:n the obscure journal Shades o f  Sherlock, Volume 5 ,  No. 
2 ,  A U I ~ U S ~ ,  194 1, pp. 4-1 2. 

Iri "The Old Stage Queen" Ella Wheeler Wilcox uninten- 
tionally has her queen hit the floor in the following stanza: 

She rises to go. Has the night turned colder? 
The new Queen answers to call and shout; 
And the old Queen looks back over her shoulder, 
Then all unnoticed she passes out. 

The first publication of Thomas Hardy's poem "The Caged 
Goldfi~nch," contained a stanza telling how the cage and bird 
came to be placed on a woman's grave: 

True, a woman was found drowned the day ensuing, 
And some at times averred 

The grave to be her false one's, who when wooing 
Gave her the bird. 

Hardy thought it best to omit the stanza when someone 
told him about the unintended meaning of its last line. 



"It is a Square! . . . Beautiful! Beau-ti-ful! Equilateral! And rectangular!" 

-LEWIS CARROLL, 
A Tangled Tale, Knot Two 

I n Chapter 10 I discussed the unsolved general problem of 
packing n identical circles into squares of minimum area so 

=that the circles do not overlap. Packing n identical squares 
into larger squares of minimum area presents a similar prob- 
lem, which except for very low values of n is also unsolved. 
After summarizing the sparse results pertaining to this diffi- 
cult task, I shall turn to some other curious questions con- 
cerning the packing of squares, then make a brief excursion 
into the third dimension. 

Like the task of packing circles into a square, the task of 
packing squares into a square can be viewed in two ways. On 
the one hand, if the outer square is assumed to have a side of 
length 1, the problem is to determine how large n identical 
squares can be and still fit into the outer square. On the other 



hand, if the identical squares are assumed to have a side of 1 
(in which case they are called unit squares), the problem is 
to determine the smallest square into which the n unit squares 
will fit. The latter procedure is the one that will be con- 
sidered here. Amazingly, minimal solutions have been found 
only in those cases where n is the square of an integer or is 
equal to 2 ,  3 or 5. 

Call the side of the square to be packed with unit squares 
k. Figure 119 displays packings for the best, or lowest, val- 
ues known for k when the number of unit squares n ranges 
from 1 through 15, with brief comments on each packing. Ob- 
viously whenever n is a square number, k is the square root 
of n, and in the cases where n equals 2 ,  3 or 5 it is not diffi- 
cult to prove that the values of k shown in the illustration are 
minimal. When n is not a square number, the side k must be 
greater than the square root of n, and it can always be taken 
to be less than or equal to the lowest integer greater than the 
square root of n. 

When n is not large and equals a2 - a for some integer a, 
it is conjectured that the side k of the minimum bounding 
square is equal to a. Or to put the conjecture geometrically, 
the unlit squares in an (a - 1)-by-a array cannot be rearranged 
to fit into a square of side smaller than a. If the conjecture is 
true, it follows at once that a square of the same size is also 
minirn~al when the number of unit squares is increased up to 
and including a2. In order to see this, assume that the bound- 
ing square can have a side smaller than a and still accommo- 
date one or more unit squares in the empty, or ath, row. Re- 
moving the extra square or squares will leave a2 - a squares 
inside a square of side smaller than a, which contradicts the 
conjecture. 

Tlhe smallest value of n for which the conjecture does not 
hold is not known. Ronald L. Graham of Bell Laboratories 
has found that the conjecture is violated when n equals 
402 - 40, or 1,560 (that is, when the outer square measures 
40 on a side), but he believes the smallest value of n that 
violates the conjecture is considerably lower, perhaps closer 
to lo2 - 10, or 90. The smallest n for which the best packing 
requires a tilting of squares at  any angle other than 45 de- 
grees is also not known. 

T'hese results, as  well as those given in Figure 119, are 
taken from the only reference I know for this fascinating 
problem, the paper "Geometrical Packing and Covering Prob- 
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FIGURE 119 Best results known for packing n unit squares into 
the smallest square possible when n ranges from 1 through 15 

lems," by the Dutch mathematician F. Gobel. When n equals 
16, of course, the value of k is 4. Packings for the best values 
known for k when n equals 17 and 18 are shown in Figure 
120. If the conjecture mentioned above is true, k equals 5 
when n equals 20 through 25. 

The case n = 19 is of special interest. Early in 1979, after 
reading about the packing of unit circles into squares, Charles 
F. Cottingham began to investigate the packing of unit squares 
into squares. Unaware of previous work in this area, Cot- 
tingham duplicated Gijbel's results up through n= 25, with one 
exception. For the case n= 19 he obtained a slightly better 



n = 19, k = 4 + ( 2 / 3 ) 4  = 4.942+ 

FIGURE 120 Packingsforn=17, n=18andn=19  

packing than the one shown at the bottom of Figure 120. Can 
you fintd it? Cottingham also improved on Gobel's patterns for 
certain values of n higher than 25. 

As n becomes larger the task of proving that a packing 
square is minimal (when n is not a square number) becomes 
increasingly difficult. Even a proof for the case n =  5 is not 
trivial.. One way to go about determining the minimum side 
length of the square that bounds five unit squares is to divide 
it into four equal square regions. Since five unit squares must 
go inside, the pigeonhole principle ensures that the centers 
of at  least two of the unit squares must be inside or on the 



border of at  least one of the four square regions. The final 
step is to show that a square region large enough to accom- 
modate the centers of two unit squares cannot be smaller than 
1 + (114)f l  on a side. Hence the side of the minimal bounding 
square must be twice that length, or 2 + (1 /2 ) f i .  

No general procedure for finding minimum bounding 
squares is anywhere in sight, but in 1975 Paul Erdos and 
Graham published a paper in which they proved a remarkable 
theorem. They showed that as the number of unit squares in- 
creases to a sufficiently large number, clever packings can 
lower the amount of wasted space to an area that never ex- 
ceeds k7'", or k.636+, where k is the side of the bounding 
square. (The area of wasted space is zero when there is a 
square number of unit squares.) 

Hugh Montg~mery later lowered this asymptotic bound 
slightly, to k ' 3 - ~ 3 " 2 ,  or k,633+,  and it can probably be lowered 
further. Graham conjectures that as n approaches infinity the 
ultimate bound may well be k.5, or the square root of k. In a 
paper published in 1978 Klaus F. Roth and Robert C. Vaughan, 
two British mathematicians, showed that the bound cannot 
have a limit below k.5. Therefore as the matter now stands, 
with respect to optimal packings of large numbers of unit 
squares into minimal bounding squares, the wasted area will 
be greater than or equal to k.5 and less than or equal to k.633+. 

To dramatize how much space can be saved when the 
number of unit squares is large, Graham considers the pack- 
ing of unit squares into a large square of side 100,000.1. If 
the squares are conventionally packed in straight rows, 
100,0002 unit squares can be fitted in. This packing leaves an 
extremely thin, linear border of empty space into which no 
unit square can fit along two sides of the outer square. If the 
squares are tilted and packed according to the Erdos-Gra- 
ham-Montgomery technique, however, more than 6,400 addi- 
tional unit squares can be fitted in! 

Now consider the sequence of squares whose sides are 
the consecutive integers 1, 2, 3, 4, 5. . . . The consecutive 
areas of these squares form the infinite sequence 1, 4, 9, 16, 
25. . . . , and the consecutive partial sums of this sequence 
are 1, 5, 14, 30, 55. . . . Does the sequence of sums include 
a square number? Yes, but only one: 4,900. In the mid-1960's 
this number, which is the square of 70 and the sum of the first 
24 square numbers, suggested the following problem: Can the 
70-by-70 square be packed with the first 24 squares whose 



sides are consecutive integers? The answer to the question is 
no, but there are packings of squares from the set that omit 
the 7.-by-7 square and leave as  little as 49 unit squares of 
wasted space. This packing is thought to be minimal, al- 
though I know of no proof of the conjecture. Nor do I know 
whether a packing with less wasted space can be achieved if 
the order-70 square is viewed as a cylindrical or toroidal sur- 
face. 

Will a set of these consecutive squares (starting with 1 or 
a higher number) tile a rectangle? This question, first asked 
by Solomon W. Golomb, remains unanswered. If the answer 
is no, as  is suspected, Golomb suggests the following refine- 
ment: What pattern of consecutive squares starting with 1 can 
be packed into a larger square to leave the smallest percent- 
age of wasted space? The same question can be asked of a 
boundling rectangle. I know of no work that has been done so 
far on any of these questions. 

No square can be packed with squares of sides 1, 2, 3, 4, 
5 . . . , and the same is probably true for a rectangle, but is 
it possible to tile the infinite plane with consecutive squares 
starting with l ?  This unusual problem was posed by Golomb 
in 19'75. Consecutive squares of sides 1 through 11 can be 
spiraled around a center as  shown in Figure 121, but that 
tiling leaves an unavoidable hole: the space marked X. No 
algorithm for tiling the entire plane with consecutive squares 
beginining with any integer has been found, but the task has 
not been proved impossible. 

Figure 122 shows one way consecutive squares can be 
placed to form a simply connected region (an area with no 
holes) that will cover more than three-quarters of the plane. 
The southeast quarter is covered by squares with sides in the 
familiar Fibonacci sequence: 1, 2, 3, 5, 8, 13. . . . The 
southwest quarter is covered by a truncated Lucas sequence 
that begins 7, 1 1, 18, 29 . . . and a thin strip of overlap from 
the squares on the right. (The Lucas sequence, which begins 
1, 3, is the simplest of the generalized Fibonacci sequences.) 
The northeast quarter is covered by squares in a truncated 
Fibonacci sequence that begins 6, 9, 15, 24 . . . and a thin 
strip of overlap from the squares below. Verner E. Hoggatt, 
Jr., th.en editor of The Fibonacci Quarterly, has shown that no 
numbers are duplicated in these three sequences. The squares 
with the sides that were omitted from the sequences are ar- 
rangeld along the top of the Lucas squares. The black spot in 



FIGURE 12 1 Can the plane be tiled with consecutive squares? 

FIGURE 122 Covering more than the three-quarter plane with 
consecutive squares 



the illustration is the origin point of the Cartesian plane. This 
pattern of consecutive squares covers more than three-quar- 
ters of the plane, of course, but it is not known whether even 
the quarter plane can be tiled exactly with consecutive squares. 

There are many ways to tile the entire plane with squares 
whose sides are not consecutive but only different. Here is 
one way, which makes use of the fact that a square can be 
dissected into as  few as  2 1 different squares (see Figure 77). 
The smallest square in any such dissection is necessarily an 
interilor one, and so to tile the plane let a dissected square, 
with its 2 1 subsquares, serve as the smallest square in a larger 
replica of the same pattern. The larger (tiled) square can then 
be the smallest square in a still larger replica, and so on. By 
continuing in this way it is possible to completely cover the 
infinite plane with squares of different sizes. 

For more than a decade it has been known that any set of 
squares with a total area of 1 (the sides need not be rational) 
can be packed without overlap into a square of area 2 (see my 
Matht!matical Carnival, Chapter 11). Suppose a rectangle has 
unit width. What is the minimum length that will allow the 
rectangle to bound any set of squares with a combined area 
of l ?  '4 long-conjectured answer of a was verified by Daniel 
J. Kleitman and Michael M. Krieger in 1970 (see the bibli- 
ography). In a 1975 paper the same two authors showed that 
the rectangle of smallest area into which any set of squares 
with :a total area of 1 can be packed has sides of 2 / a  and 
fi. In each of these results the wasted area is huge-more 
than (50 percent of the area of the set of squares. 

A classic square-packing problem known as  Mrs. Per- 
kins' Quilt is named for a puzzle mentioned in one of Henry 
Ernest Dudeney's books. (John Horton Conway's work on this 
problem is also described in Chapter 11 of my Mathematical 
Carnival.) Here the task is to divide a square with integral 
side r;s into the smallest number of nonoverlapping subsquares 
with integral sides so that no space is wasted. In this puzzle 
the subsquares are not required to be different. 

The following question is closely related to Mrs. Perkins' 
Quilt: What is the largest number of subsquares (allowing du- 
plicates) into which no square can be cut? Or to put it another 
way, what is the smallest number n of subsquares such that 
a square can always be cut into n and all higher numbers of 
subsquares? It is not hard to show that a square cannot be 
cut into two, three or five subsquares, but it can be cut into 



six subsquares and all higher numbers of subsquares. (To cut 
a square into six subsquares, divide a 3-by-3 square into nine 
unit squares and then mark off one subsquare of side 2 and 
five of side 1.) Hence the answer to the question phrased the 
first way is 5, and the answer to the question phrased the 
second way is 6. 

The natural extension of this problem to cubes turned out 
to be considerably more difficult. It was established that a 
cube can be subdivided into n subcubes when n equals 1, 8, 
15, 20, 22, 27, 29, 34, 36, 38, 39, 41, 43, 45, 46, 48, 49, 50, 
51, 52, 53, 55 and all higher numbers. The task was proved 
to be impossible for all the remaining values of n except one: 
n= 54. For many years the question of whether a cube could 
be cut into 54 subcubes remained a perplexing problem. 

As long as the case n= 54 was unsolved it was impossible 
to answer the following question: What is the largest number 
of subcubes, not necessarily different, into which a cube can- 
not be cut? The question became known as  the Hadwiger 
problem because it had been framed in 1946 by a Swiss math- 
ematician, Hugo Hadwiger of Bern. The answer was thought 
to be 54, but a more recent dissection of a cube into 54 sub- 
cubes was independently found by two other residents of Bern, 
Doris Rychener, a flute teacher, and A. Zbinden of the Inter- 
national Business Machines Corporation. The solution was 
published by Richard K. Guy in 1977. Figure 123, based on 
an illustration provided by Guy, shows 42 cubes of side 1, 
four of side 2, twa of side 3 and six of side 4. The four pieces 

FIGURE 123 Doris Rychener's dissection of the 8-by-8-by-8 cube 
into 54 subcubes 



shown go together in an obvious way to make a cube of 
side 8. 

It is now possible to answer Hadwiger's question. The 
largest number of cubes into which a cube cannot be cut is 
47; or 48 is the smallest number such that a cube can be cut 
into that number of subcubes and all higher numbers of them. 
Incidentally, it is not possible to cut a cube into any number 
of subcubes of different sizes. The proof, one of the most 
beautiful in combinatorial geometry, can be found in my ad- 
dendum to William T. Tutte's article "Squaring the Square," 
reprinted in my 2nd Scientific American Book of  Mathematical 
Puzzles & Diversions. 

Many curious square-packing problems concern only a 
single square that fits into a region of a specified shape. For 
example, what is the largest square that can be inscribed in 
a regular pentagon of side I ?  

Figure 124 shows the best known packing (as of 1979) of 
nineteen unit cubes into a square. 

The problem of finding the largest square that will go in- 
side a regular pentagon was posed by Fitch Cheney in the 
Journal of Recreational Mathematics, and answered by him in 

n = 19, k = 7/2 +a = 4.914+ 

FIGURE 124 Solution to the packing of 19 unit cubes 



FIGURE 125 Solution to packing the largest square in a regular 
pentagon 

a 1970 issue (see the bibliography). It is easy to suppose the 
square shown at the left in Figure 125 is the largest because 
the slightest tilting of the square moves one of its corners out- 
side the pentagon. The correct answer, however, is shown at 
the right. Assuming that the pentagon has a side of 1, the 
square at the left has a side of 1.0605+, whereas the square 
at the right has a side of 1.0673+. Note that the bottom cor- 
ner of the square at  the right does not quite touch the base of 
the pentagon. 

In 1979, Walter Trump, of Niirnberg, West Germany, sent me 
the pattern for packing 11 unit squares shown in Figure 126. 
It  lowers k to 3.877+. Walter R. Stromquist, of Paoli, Penn- 
sylvania was able to show that this answers a question raised 
by Ronald L. Graham: What is the smallest number of unit 
squares for which the densest packing into a square requires 
a tilting of the squares at  an angle other than 45 degrees? In 
this case the angle is 40.18 degrees. The pattern was later 
found by others, and as far as  I know is the densest known 
packing for n = 1 1. 

In a 1984 letter Stromquist improved Gbbel's results for 
n = 18 and n = 26. The two patterns are shown in Figure 127. 



FIGURE 126 n = l l ,  k=3.877+, thetiltangle=40.18" 

On the left the tilt angle is 4.82+ degrees, on the right it is 
27.58+ degrees. The n= 18 result had earlier been found by 
Pertti Hamalainen, of Finland, who sent it to me in 1980, and 
by Mats Gustafson, of Ludvika, Sweden, who provided it the 
following year. 

Robert T. Wainwright was the first reader to find an im- 
proved packing for 19 unit squares. His solution, shown in 
Figure 128, lowers k to (4 a) + 3 = 4.885+, the current re- 
cord. The pattern was also discovered by Robert Ammann, 
Joseph Crowther, Paul Engler, Gerald Gough, Hugh Everett, 
David Hobby, Richard Holzsayer, David Kitchens, Milos 
Konopasek, Evert Stenlund, and Douglas Stoll. 

FIGURE 127 n= 18, k=(7 +*)2=4.822+n=26, k=5.650+ 
Improved packings by Walter Stromquist 



FIGURE 128 Packing of 19 unit squares into a square of side 
3 + ( 4 / 3 ) f i ,  or 4.885+ 

I mentioned the old problem of tiling the 70 x 70 square 
with squares taken from the set of squares with sides 1 through 
24. A perfect tiling with all 24 squares is impossible, and the 
densest known tiling omits the 72 for a covering of all but 49 
square units. I asked if this could be improved if the 70 x 70 
square had its sides joined to make a torus or a cylinder. The 
answer is yes. The best solution for the cylinder (see Figure 
129) came from Robert Reid. It  omits the 22 and 62 leaving 
an uncovered area of 40 square units. Frank L. Paulsen sent 
the best packing for the torus (see Figure 130). It omits the 
32 and .S2, leaving an uncovered area of 34 square units. I will 
be pleased to hear of any improvements on either task. 

Robert Wainwright, intrigued by the 70x70  problem, 
thought of the following related task. Partial sums in the se- 
quence 1(12) + 2(22)+ 3(32) . . . are square numbers. What is 
the smallest square, he asked, in which a set of such consecu- 
tive squares can be perfectly packed (no overlap or holes). In 
other words, we wish to perfectly pack a square with one unit 
square, two squares of side 2, three of side 3, and so on. It  is 
not hard to show that if n is the side of the enclosing square, 
it cannot have values 1 through 5. Wainwright could not find 
solutions for n = 6 through 1 1, but was unable to prove impos- 
sibility. He conjectures that the n= 12 square shown in Fig- 
ure 13 1 is the smallest that can be perfectly packed. Can any- 
one do better? 

I gave a way to tile the plane with distinct integer-sided 
squares based on the dissection of a square into 21 unequal 



FIGURE 129 Best known solution of the 70 x 70 problem on a cyl- 
inder 

squares. Another way to do it is to start with a unit square so 
dissected, then whirl around it squares of 1, 2 ,  3, 5, 8, 13. 
. . . in the Fibonacci sequence. It has been shown that the 
number of essentially different ways of tiling the plane with 
unequal integer squares is 2 to the power of aleph-null. 

In 1964 D. E. Daykin asked if space could be tiled with 
unequal integer cubes. In 1982 Robert J. M. Dawson (see the 
bibliography) proved this to be impossible, and extended the 
result to all higher Euclidean spaces. In 1988 Dawson broad- 
ened this result by removing the integer restriction and show- 
ing tlhat no space tiling is possible with unequal cubes even 
when the sides can be real numbers. 



FIGURE 130 Best known result for the 70 x 70 problem on a torus 

Golomb's problem of tiling the plane with consecutive 
squares, starting with 1, remains unsolved. However, Brian 
Astle, of Princeton, New Jersey, wrote to explain how the plane 
could be tiled with consecutive squares in such a way as to 
leave an arbitrarily small fraction of the plane untiled. Every 
tile in the sequence is at a finite distance from the origin point. 
Astle's method, too complicated to explain here, remains un- 
published. Golomb tells me that he may have found an algo- 
rithm for solving his problem, but there are still gaps in the 
proof that he has yet to fill. 

It is easy to see that it is not possible to tile the plane 
with unit squares without having an infinite number of squares 
that share an edge with an adjacent square. Can unit cubes 
be close-packed to fill space without any pair of cubes meet- 



FIGURE 131 Is  this the smallest square that  solves Wainright's 
problem? 

ing face to face? Surprisingly, the answer is yes, though it is 
difficult to visualize or draw pictures of such packing. Ra- 
phael M. Robinson was the first to discover such a tiling, which 
he describes in a paper published in The Mathematical Gard- 

- ner (see the bibliography). After Robinson's article was writ- 
ten, Basil Gordon, at the University of California, Los Ange- 
les, found a much simpler tiling, and proved that such tilings 
exist for hypercubes in all higher dimensions. Robinson re- 
porteld this in a postscript, but Gordon has not yet published 
his proof. 
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ChaitinTs Omega 

A fascinating unpublished paper titled "On Random and 
Hard-to-Describe Numbers" has been written by - Charles H. Bennett, a mathematical physicist at  the 

Thomas J. Watson Research Center of the International Busi- 
ness Machines Corporation. It begins by recalling certain par- 
adoxes involving integers, in particular a paradox that seems 
to stand in the way of calling any specific integer a random 
one. The resolution of the paradox makes randomness a prop- 
erty that most integers have but cannot be proved to have, a 
subject that was treated by Gregory J. Chaitin, also of the 
Watson Research Center in a 1975 Scientific American article. 
Bennett goes on to consider the senses in which irrational 
numbers such as pi can be said to be random. And he dis- 
cusses at length the irrational number 0, recently discovered 
by Chaitin, which is so random that in the long run no gam- 
bling scheme for placing bets on its successive digits could do 
better than break even. 

The number R has other unusual properties. To begin 
with, it can be defined precisely but it cannot be computed. 
Most remarkable, if the first few thousand digits of the num- 
ber were known, they would, at  least in principle, provide a 
way to answer most of the interesting open questions in math- 
ematics, in particular those propositions that if false could be 
refuted in a finite number of steps. The following discussion of 
these issues is taken from Bennett's paper, which begins with 
a simple variant of Berry's paradox. Named after G. G. Berry, 
the Oxford librarian who discovered it, the paradox was first 
published by Bertrand Russell and Alfred North Whitehead in 
Principia Mathematica. 



The number "one million, one hundred one thousand, one hun- 
dred twenty one" is unusual in that it is, or appears to be, 
the number named by the expression: "The first number not 
nameable in under ten words." This expression has only nine 
words, however, and so there is an inconsistency in regarding 
it as  EL name for 1,101,12 1 or any other number. Berry's par- 
adox shows that the concept of nameability is inherently am- 
biguoils and too powerful to be used without restriction. In a 
note in The American Mathematical Monthly [April, 19451 Ed- 
win F. Beckenbach pointed out that a similar paradox arises 
when one attempts to classify numbers as either interesting 
or dull: There can be no dull numbers, because if there were, 
the first of them would be interesting on account of its dull- 
ness. 

Berry's paradox can be avoided and even tamed, how- 
ever, if the definition of nameability is restricted, that is, if 
an integer is considered to be named when it has been cal- 
culated as the output of a computer program. To standardize 
the notion of computation in this definition a simple idealized 
compilter known as a universal Turing machine is introduced. 
This rnachine will accept a program in the form of a sequence 
of 0's and 1's on an input tape and write the results of its 
computation, again in the form of a sequence of binary digits, 
on an output tape at the end of the computation. A third tape 
is used during the computation to store intermediate results. 
(The use of separate tapes for input, output and memory is a 
conceptual convenience rather than a necessity; in the earli- 
est Turing machines the same tape served all three pur- 
poses.) As is well known, a universal Turing machine can do 
anything the most powerful digital computer can do, although 
considerably slower. More generally, it can perform even the 
most complicated manipulation of numerical or symbolic in- 
formation as  long as  the manipulation can be expressed as  a 
finite sequence of simple steps in which each step follows from 
the preceding one in a purely mechanical manner without the 
intervention of judgment or chance. 

An integer x can now be named by specifying a binary 
sequence p that, when it is given to the Turing machine as 
input, causes the machine to calculate x as its sole output and 
then halt. There can be no doubt that the program p does in- 



deed describe x.  Hence the universal Turing machine pro- 
vides an unambiguous but flexible language in which a num- 
ber can be described according to any of the ways it might be 
effectively calculated. (For example, the number 523 might 
be described as  the 99th prime number, as (1 3 x 41) - 10 or, 
more directly, as  the binary sequence 100000 10 1 1. ) Every 
integer is nameable in this language, because even an integer 
with no distinguishing properties can always be described by 
simply giving its binary sequence. 

Returning to the question of interesting and dull num- 
bers, an interesting number can now be defined, without par- 
adox, as one computable by a program with considerably fewer 
bits, or binary digits, than the number itself. This short de- 
scription would reflect some special feature by which the 
number could be distinguished from the general run of num- 
bers. By this definition, then, 2659536 + 1, the first million dig- 
its of pi and (1 7!)! are interesting numbers. [The exclamation 
point is the factorial sign: n! equals 1 x 2 x 3 x . . . n.1 Con- 
versely, a dull, or random, number is one that cannot be sig- 
nificantly compressed, that is, one whose shortest description 
has about as  many bits as  the number itself. This algorithmic 
definition of randomness as incompressibility, which is re- 
viewed in the article by Chaitin mentioned above, was devel- 
oped in the 1960's by several mathematicians, including Ray 
J. Solomonoff and Chaitin in the U.S. and A. N. Kolmogorov 
in the U.S.S.R. Just as most integers are random according 
to the intuitive meaning of the word, most integers are incom- 
pressible or nearly so, because there are far too few short 
programs to go around. In other words, even if no programs 
were wasted (say by computing the same result as  other pro- 
grams), only a small fraction of the n-bit integers could be 
provided with programs even a few bits shorter than them- 
selves. 

Using this definition of randomness, Chaitin demon- 
strated the surprising fact that although most integers are 
random, only finitely many of them can be proved random 
within a given consistent axiomatic system. A form of Godel's 
famous incompleteness theorem, this result implies in par- 
ticular that in a system whose axioms and rules of inference 
can be described in n bits it is not possible to prove the ran- 
domness of any integer much longer than n bits. Chaitin's proof 
of this assertion makes use of a computerized version of the 
Berry paradox: Suppose in a proof system describable in a 



small number of bits the randomness of some integer with a 
large number of bits can be proved. One could then design a 
small Turing-machine program based on the proof system that 
would yield the large random integer as output. If the large 
integer were truly random, however, it could not be the out- 
put of any small program, and so a contradiction has been 
reached. 

More precisely, the Turing-machine program would in- 
corpol-ate a fixed supervisory routine, or subprogram, with a 
length, of, say, c bits. This routine would utilize the n bits of 
axioms and rules of inference to begin systematically gener- 
ating all possible proofs that could be derived from the ax- 
ioms in order of increasing number of deductive steps: first 
all one-step proofs, then all two-step proofs and so on. After 
each proof was generated the routine would check to see if it 
was a proof that some integer of considerably more than n + c 
bits is random. If such a proof were found, the supervisory 
routine would print out the large random integer specified in 
the proof and then call a halt to the entire computation. The 
total length of the Turing-machine program (the supervisory 
routine plus the axioms and the rules of inference) would be 
n + c bits, however. In other words, a program n + c bits long 
would have generated as its output a specific integer that by 
the algorithmic definition of randomness could not be pro- 
duced by any program as small as n+ c bits. The only escape 
from this contradiction is to conclude either that the axio- 
matic system is inconsistent (that is, untrue statements can 
be proved within it) or that the systematic generation of proofs 
must continue indefinitely, without uncovering a proof of ran- 
domness for any integer much larger than n+c bits. The orig- 
inal Berry paradox appeared as a nuisance, casting doubt on 
the seemingly meaningful notion of a random integer. The 
computerized Berry paradox surrounds this notion with a 
necessary hedge of unprovability, allowing it to be defined in 
a nonoontradictory manner. 

Long before the notion of a random integer was taken se- 
riously   mile Borel, Richard von Mises and other mathema- 
ticians sought to define and find examples of random real 
numbers or, equivalently, random infinite sequences of deci- 
mal or binary digits. I t  has been conjectured that irrational 
numbers such as  pi, e and v2, which occur naturally in math- 
ematics, are random in the sense that each digit, and indeed 
each block of digits of fixed length, appears with equal fre- 



quency in their decimal expansion. Any sequence of digits with 
this property is said to be normal. It is not hard to show that 
no rational number is normal no matter what base it is ex- 
pressed in, and that almost all the irrational numbers must be 
normal in every base. So far none of the individual classic 
irrational numbers has been proved normal, however, al- 
though statistical evidence generally supports the conjecture 
that they are. 

On the other hand, it is easy to construct "artificial" ir- 
rational numbers that can be proved normal in spite of the 
fact that their digits follow a trivial and transparent pattern. 
The most famous of these numbers was invented by D. G. 
Champernowne in the early 1930's: 0.123456789101 112 13 14 
15 161 7 1819202 1222324. . . . This preposterous number, 
which consists of the decimal integers in increasing order, 
has been proved not only irrational and normal (in base 10) 
but also transcendental. (The transcendental numbers are those 
numbers that are not the roots of ordinary algebraic equa- 
tions.) In the initial portions of Champernowne's number there 
are significant departures from normality, but the differences 
in frequency tend toward zero as the number of digits being 
considered is increased. It is apparently not known whether 
the number is normal in all other bases. 

Although the sequence of digits in the decimal expansion 
of pi may be random in the sense of being normal, the se- 
quence is not unpredictable. In other words, a good gambler, 
betting on the successive digits of pi, would eventually infer 
the rule for calculating the number and thereafter win every 
bet. The same is true of Champernowne's number. Is there a 
sequence so random that no computable gambling strategy, 
betting on each successive digit at  fair odds, could do better 
than break even? Any number that is random in this strong 
sense would necessarily be normal in every base. It is a fun- 
damental result of probability theory that in fact almost all 
real numbers are random in this way, but finding a specific 
instance of such a number is not easy. Moreover, there is a 
sense in which no specifically definable real number can be 
random, since there are uncountably many real numbers (that 
is, the set of real numbers is too large to be matched up one- 
for-one with the positive integers) but only countably many 
definitions. In other words, the mere fact that a real number 
is definable makes it atypical. In this case, however, the 
problem is only to find a number that cannot be shown to be 



atypical by constructive, or computational, means. In partic- 
ular the number must not be computable from its definition, 
because if it were, a perfect betting strategy could be de- 
vised. 

Chaitin's irrational number R is, among its other remark- 
able properties, random in this strong sense. To understand 
why that is true, however, it is necessary to deal briefly with 
the classic unsolvable problem of computability theory known 
as the halting problem: the task of distinguishing computer 
progralms that come to a spontaneous halt from those that run 
on indefinitely. Leaving aside gross programming errors, which 
can cause a program to halt or not to halt for trivial reasons, 
a program halts if it succeeds in doing what it set out to do, 
when it has computed, say the 99th prime number or the first 
millioii digits of pi. Conversely, a program will run on indefi- 
nitely if the task it is embarked on is an unending one, such 
as computing all prime numbers or searching for a planar map 
that cannot be colored with only four colors so that no two 
adjacent regions are the same color. 

At first the halting problem might seem solvable. After 
all, the fact that a program halts can always be demonstrated 
by simply running the program long enough. Moreover, there 
are miany programs that can easily be proved to halt or not to 
halt without ever running them. (For example, the famous four- 
color theorem, which states that five colors are never re- 
quirecl for the map-coloring task mentioned above, was finally 
proved in 1976, and that proof guarantees that the map-color- 
ing program will not halt.) The difficulty comes, then, not in 
solving particular cases of the halting problem but in solving 
the problem in general. A. M. Turing, the British mathemati- 
cian who invented the Turing machine, showed that there is 
no general prescription for deciding how long to run an arbi- 
trary program so that its halting or nonhalting will be re- 
vealecl. He also showed that there is no consistent system of 
axioms strong enough to decide the halting of all programs 
without running them. The unsolvability of the halting prob- 
lem can be derived from and indeed is equivalent to the more 
recent result that randomness, in the Chaitin-Kolmogorov sense 
of incompressibility, is a property that most integers have but 
cannot be proved to have. 

Now imagine that the Turing machine, instead of being 
given a definite program at the beginning of its computation, 
is fed a random sequence of bits. That can be accomplished 
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by flipping a coin whenever the machine requests another bit 
from its input tape and feeding in 1 or 0, depending on whether 
the coin comes up heads or tails. This procedure raises a cu: 
rious question: When the procedure is begun, what is the 
probability that the machine will eventually halt? 

The answer is Chaitin's number R. Because the value of 
R depends on which universal Turing machine is being used, 
it is not a single universal constant like pi. For a given ma- 
chine, however, R is a well-defined irrational number be- 
tween zero and one, with a natural interpretation as  that ma- 
chine's halting probability on a random program. A randomly 
chosen program is very likely to tell the computer to do some- 
thing impossible or pointless, so that the machine either stops 
immediately in an error state or loops endlessly through a small 
sequence of instructions. For most computers the former be- 
havior predominates, and so because the halting probability 
is close to 1 the decimal expansion of R begins with several 
consecutive 9's. I t  can be shown, however, that the digit se- 
quence of R soon becomes quite patternless, ultimately de- 
feating any computable gambling strategy, as well as  being 
random in the Chaitin-Kolmogorov sense of incompressibility. 

The most remarkable property of R is not its randomness, 
however. After all, it shares that property with the great ma- 
jority of real numbers. Rather it is the fact that if the first few 
thousand digits of fl were known, they would, at  least in prin- 
ciple, suffice to decide most of the interesting open questions 
in mathematics. This property, as well as R's immunity to 
gambling, is due to the compact way R encodes solutions to 
the halting problem. 

The most famous unsolved problem in mathematics is 
probably Fermat's "last theorem," which states that the equa- 
tion xn + yn = zn has no solution in positive integers when n ex- 
ceeds 2. Pierre de Fermat made this assertion in a handwrit- 
ten note in the margin of a book on number theory, adding 
that he had discovered a truly remarkable proof of it that the 
margin was not large enough to hold. Fermat died without 
exhibiting his proof, and three centuries of effort by other 
mathematicians have yielded neither a proof nor a refutation. 

Fermat's last theorem, like most of the famous unproved 
conjectures in mathematics, is an assertion of nonexistence 
and therefore could be refuted by a single finite counterex- 
ample, namely a set of integers x, y, z and n that solve the 
equation. Such finitely refutable conjectures are equivalent to 



the assertion that some computer program that searches sys- 
tematically for the allegedly nonexistent object will never halt. 
Another famous finitely refutable proposition is Goldbach's 
conjecture, which asserts that every even number is the sum 
of two primes. 

Another kind of finitely refutable conjecture that has had 
an important place in the history of mathematics is the asser- 
tion that some proposition is independent of a given set of 
axiom:;, that is, the proposition can be neither proved nor re- 
futed. The most famous propositions of this type are the par- 
allel postulate, which states that through a given point there 
is exactly one line parallel to a given line, and the continuum 
hypothesis, which states that there is no infinite number be- 
tween aleph-null (the number of positive integers) and c (the 
number of real numbers). In the 19th century the parallel 
postu1,ate was shown to be independent of the other axioms of 
Euclidean geometry, and in this century the continuum hy- 
pothesis was shown to be independent of the axioms of set 
theory. The independence of a proposition P from a given set 
of axioms is equivalent to the nonhalting of a program that 
systerr~atically generates proofs from the axioms, searching for 
a proof or refutation of P. 

Not all famous conjectures are finitely refutable. For ex- 
ample, no finite amount of direct evidence can decide whether 
pi is normal, whether there are infinitely many twin primes 
(consecutive odd primes such as 11 and 13 or 857 and 859) 
or whether the P# NP conjecture in complexity theory is true. 
[The P#NP conjecture asserts that there are mathematical 
problems for which the validity of guessed solutions can be 
verified quickly but for which solutions cannot be found 
quickly.] Such conjectures are not equivalent to halting prob- 
lems, but there is good reason to believe most of them could 
be settled indirectly, by proving stronger, finitely refutable 
conjectures. For example, many twin primes are known, and 
empirical evidence indicates that the spacing between them 
grows rather slowly. Therefore the twin-prime conjecture may 
be viewed as an unnecessarily weak form of a stronger and 
still probably true assertion about the spacing of twin primes, 
say that there is always at least one pair of twin primes be- 
tween lon  and lon+' .  This stronger assertion is equivalent to 
the nonhalting of a program that looks for an excessively large 
gap (greater than a factor of 10) in the distribution of twin 
prime:;. (It is important to note that some mathematical ques- 



tions cannot be reduced to halting problems, for example, some 
questions about R itself. These irreducible questions tend, 
however, to be rather artificial and self-referent.) 

Interesting conjectures, like interesting numbers, tend to 
be concisely describable. It is hard to imagine a mathemati- 
cally interesting, finitely refutable conjecture so verbose that 
it could not be encoded in the halting problem for a small 
program, one a few thousand or tens of thousands of bits long. 
Thus the answers to all interesting conjectures of this kind, 
including those that have yet to be formulated, would in prin- 
ciple be available if there were some kind of "oracle" capable 
of solving the halting problem for all programs shorter than a 
few thousand bits. The number of programs involved would 
still be enormous; for example, there are about 2'voo0 pro- 
grams shorter than 1,000 bits. Hence it would seem that any 
oracle able to answer all these questions correctly would have 
to either be very smart or possess an enormous amount of 
stored information. In fact, because of the compact way in 
which R encodes the halting problem, its first few thousand 
bits serves as just such an oracle. 

How can solutions to specific halting problems be re- 
covered from R? Since R is defined as the overall halting 
probability of a computer with random input, it can be re- 
garded as the sum of the probabilities of all halting computa- 
tions. Each halting program contributes to the sum its own 
probability of being chosen (by accident, as  it were) when the 
input bits are supplied by coin tossing. The probability of 
generating any particular k-bit program in k coin tosses is 
1/2k. Therefore if feeding this program to the Turing machine 
one bit at  a time causes it to embark on a halting computation 
in which all k bits of the program but no more are actually 
requested and read, then that program's contribution to R is 
1/2k. (Programs that call for the machine to read more or fewer 
bits than there are in the program are considered not to halt, 
ensuring that each halting computation's contribution to R is 
counted only once.) 

Figure 132 shows how the first n bits of R can be used to 
solve the halting problem for all programs of n bits or fewer 
in length. Because R is an irrational number the number that 
consists of its first n bits, R,, slightly underestimates its true 
value: 0, is less than R, which is less than R,+ 112". In order 
to solve the halting problem for all n-bit programs, one begins 
a systematic but unending search for all the programs that 



RUN FIRST PROGRAM ONE STEP; 
RUN SECOND PROGRAM ONE STEP: 
RUN FIRST PROGRAM ONE MORE STEP; 
RUN THIRD PROGRAM ONE STEP; 
RUN SECOND PROGRAM ONE MORE STEP; 
RUN FIRST PROGRAM ONE MORE STEP; 
RUN FOURTH PROGRAM ONE STEP; 

f3 

FIGURE 132 Using the first n bits of R to solve the halting prob- 
lem for all programs of n bits or fewer 

halt, of whatever length, running first one program and then 
another for increasingly long times until enough halting pro- 
grams have been found to account for more than R, in total 
halting probability. 

One way to visualize this process is to consider a balance 
with a weight equal to R, in its left pan. As is shown in the 
illustriation the programs are run in a way that is reminiscent 
of the song "The Twelve Days of Christmas": first one step of 
the first program is run, then one step of the second program 
and another step of the first, then one step of the third pro- 
gram, another step of the second and another step of the first, 
and SO on. Every time a program of length k is found to halt, 
a weight of 1/2k is dropped into the right pan of the balance, 
because 1/2k is the probability of that program being chosen 
and executed by a computer whose input bits are supplied by 
coin tossing. Eventually the balance must tip to the right, since 
the total weight of the programs that halt-the halting proba- 



bility of R-is an irrational number between R, and R, + 112". 
By this time a great many programs will have been found to 
halt, some longer than n bits and some shorter, and many pro- 
grams that may halt later will not have done so yet. After the 
balance has tipped, however, no more programs of length n 
or less can halt, because if one did, that would raise R above 
its established upper bound of R,+ 1/2n. In other words, the 
subsequent halting of a program of n bits or fewer would alter 
one of the known digits of R. 

If this gargantuan computation were carried out with a 
sufficiently precise estimate of R, say the first 5,000 bits, then 
among the programs whose fate would be decided would be 
one whose nonhalting would verify Fermat's last theorem, and 
programs that would decide Goldbach's conjecture and all other 
simply stated, finitely refutable conjectures. In addition pro- 
grams would be included whose nonhalting would almost cer- 
tainly settle many conjectures that are not finitely refutable, 
such as those about the normality of pi, the twin primes and 
the P#NP question, by proving stronger, finitely refutable 
statements. 

Returning to the senses in which 52, itself is random-its 
incompressibility and the impossibility of successfully gam- 
bling on its digits-it may seem strange that R can contain so 
much information about the halting problem and yet be com- 
putationally indistinguishable from a meaningless random se- 
quence. Actually R is a totally informative message, one that 
appears to be random because all redundancy has been 
squeezed out of it, a message consisting only of information 
that can be obtained no other way. 

To put R's lack of redundancy in perspective, consider a 
more traditional way of encoding the halting problem in an 
uncomputable irrational number: let K be defined as the real 
number whose nth bit is 1 or 0, depending on whether or not 
the nth program halts. K is indeed often referred to as an or- 
acle for the halting problem, but it is a very dilute oracle in 
the sense that the first 2, bits of K contain about the same 
information as the first n bits of R: enough to solve the halting 
problem for all programs of n bits or fewer. K is susceptible 
to gambling precisely because it is dilute. For example, a siz- 
able portion of all programs can easily be proved to halt or 
not to halt for trivial reasons. The corresponding bits of K are 
predictable, and by betting only on those bits a gambler could 
win consistently. Moreover, even the unpredictable bits of K 



are not. totally unpredictable. Often two programs can be shown 
to be a.ttacking the same nontrivial problem in different ways. 
The halting of one program will then decide the halting of the 
other, and a gambler who "passed" on the first program, not 
knowing which way to bet, could bet confidently on the sec- 
ond. 

The fact that R is incompressible and immune to gam- 
bling follows from its compact encoding of the halting prob- 
lem. Because the first n bits of R solve the halting problem 
for all programs of n bits or fewer, they constitute an "axiom" 
sufficient to prove the incompressibility of all incompressible 
integers of n bits or fewer. If R, could be computed by a pro- 
gram significantly shorter than n bits, then a program of sim- 
ilar size would suffice to find and print out the first incom- 
pressible n-bit integer, which is a contradiction. In other words, 
since (2, provides enough information to compute a specific n- 
bit incompressible integer, it must be incompressible itself. 

Tk~roughout history mystics and philosophers have sought 
a com:pact key to universal wisdom, a finite formula or text 
that would provide the answer to every question. The use of 
the Bible, the Koran and the I Ching for divination and the 
tradition of the secret books of Hermes Trismegistus and the 
medieval Jewish Cabala exemplify this belief or hope. Such 
sources of universal wisdom are traditionally protected from 
casual use by being difficult to find as well as difficult to un- 
derstand and dangerous to use, tending to answer more ques- 
tions and deeper ones than the searcher wishes to ask. The 
esoteric book is, like God, simple but undescribable. It  is om- 
niscient, and it transforms all who know it. The use of clas- 
sical tsexts to foretell mundane events is considered supersti- 
tion nowadays, yet in another sense science is in quest of its 
own Cabala, a concise set of natural laws that would explain 
all phenomena. In mathematics, where no set of axioms can 
hope to prove all true statements, the goal might be a concise 
axiomatization of all "interesting" true statements. 

R is in many senses a Cabalistic number. It can be known 
of through human reason, but not known. To know it in detail 
one must accept its uncomputable sequence of digits on faith, 
like words of a sacred text. The number embodies an enor- 
mous amount of wisdom in a very small space inasmuch as its 
first few thousand digits, which could be written on a small 
piece of paper, contain the answers to more mathematical 
questi'ons than could be written down in the entire universe- 
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among them all interesting finitely refutable conjectures. The 
wisdom of R is useless precisely because it is universal: the 
only known way of extracting the solution to one halting prob- 
lem, say the Fermat conjecture, from R is by embarking on a 
vast computation that would at the same time yield solutions 
to all other simply stated halting problems, a computation far 
too large to be actually carried out. Ironically, however, al- 
though R cannot be computed, it might be generated acciden- 
tally by a random process, such as a series of coin tosses or 
an avalanche that left its digits spelled out in the pattern of 
boulders on a mountainside. The first few digits of R are prob- 
ably already recorded somewhere in the universe. No mortal 
discoverer of this treasure, however, could verify its authen- 
ticity or make practical use of it. 

As this column was going to press I received a telegram 
from the notorious numerologist Dr. Matrix asserting that he 
is in possession of the first 1,101,121 bits of R (in principle 
enough to answer a good many uninteresting questions as well 
as all the interesting ones). He is currently soliciting bids on 
individual bits or consecutive blocks. 
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