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Preface 

Among the numerous fascinating letters I have received con
cerning my first puzzle book (whose name I can never re
member!), one was from the ten-year-old son of a famous 
mathematician who was a former classmate of mine. The let
ter contained a beautiful original puzzle, inspired by some of 
the puzzles in my book which the boy had been avidly read
ing. I promptly phoned the father to congratulate him on his 
son's cleverness. Before he called the boy to the phone, the 
father said to me in soft conspiratorial tones: "He is reading 
your book and loves it! But when you speak to him, don't let 
him know that what he is doing is math, because he hates 
math! If he had any idea that this is really math, he would 
stop reading the book immediately!" 

I mention this because it illustrates a most curious, yet 
common, phenomenon: So many people I have met claim to 
hate math, and yet are enormously intrigued by any logic or 
math problem I give them, provided I present it in the form 
of a puzzle. I would not be at all surprised if good puzzle 
books prove to be one of the best cures for so-called "math 
anxiety." Moreover, any math treatise could be written in the 
format of a puzzle book! I have sometimes wondered what 
would have happened if Euclid had written his classic Ele-
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PR E FA C E  

ments in such a format. For example, instead of stating as a 
theorem that the base angles of an isosceles triangle are 
equal, and then giving the proof, he could have written: 
"Problem: Given a triangle with two equal sides, are two of 
the angles necessarily equal? Why, or why not? (For the solu
tion, see page -.)" And similarly with all the rest of his theo
rems. Such a book might well have become one of the most 
popular puzzle books in historyl 

In general, my own puzzle books tend to be different from 
others in that I am primarily concerned with puzzles that 
bear a significant relation to deep and important results in 
logic and mathematics. Thus, the real aim of my first logic 
book was to give the general public an inkling of what 
GodeI's great theorem was about. The volume you are now 
holding goes still further in this direction. I used the manu
script of it in a course entitled "Puzzles and Paradoxes," 
where one of the students remarked to me: "You know, this 
whole book-particularly parts Three and Four-has much 
the flavor of a mathematical novel. I have never before seen 
anything like it!" 

I think the phrase "mathematical novel" is particularly 
apt. Most of this book is indeed in the form of a narrative, and 
a good alternative title for it would be "The Mystery of the 
Monte Carlo Lock," since the last half concerns a case in 
which Inspector Craig of Scotland Yard must discover a com
bination that will open the lock of a safe in Monte Carlo to 
prevent a disaster. When his initial efforts to crack the case 
prove unsuccessful, the inspector returns to London, where 
he serendipitously renews acquaintance with a brilliant and 
eccentric inventor of number machines. Together they team 
up with a mathematical logician, and soon the three find 
themselves in ever-deepening waters that flow into the very 
heart of Godel's great discovery. The Monte Carlo lock, of 
course, turns out to be a "Godelian" lock in disguise, its 
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P R E FA C E  

modus operandi beautifully reflecting a fundamental idea of 
Codel's that has basic ramifications in many scientific 
theories dealing with the remarkable phenomenon of self-re
production. 

As a noteworthy dividend, the investigations of Craig and 
his friends lead to some startling mathematical discoveries 
hitherto unknown to either the general public or the scien
tific community. These are "Craig's laws" and "Fergusson's 
laws," which are published here for the very first time. They 
should prove of equal interest to the layman, the logician, the 
linguist, and the computer scientist. 

This whole book has been great fun to write, and should be 
equal fun to read. I am planning several sequels. Again I wish 
to thank my editor, Ann Close, and the production editor, 
Melvin Rosenthal, for the wonderful help they have given 
me. 

Elka Park, N. Y. 
February 1982 
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Chestnuts

Old and New 

I would like to begin with a series of miscellaneous arithmeti
cal and logical puzzles--some new, some old. 

1 • How Mu ch ?  

Suppose you and I have the same amount of money. How 
much must I give you so that you have ten dollars more 
than I? (Solutions come at the end of each chapter.) 

2 • The Po lit ician Puzz le 

A certain convention numbered one hundred politicians. 
Each politician was either crooked or honest. We are given 
the following two facts: 

(1) At least one of the politicians was honest. 
(2) Given any two of the politicians, at least one of the two 

was crooked. 
Can it be determined from these two facts how many of 

the politicians were honest and how many were crooked? 
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T H E  L A D Y  O R  T H E  T I G E R ? 

3 • Old Wine in a Not-so-new Bottle 

A bottle of wine cost ten dollars. The wine was worth nine 
dollars more than the bottle. How much was the bottle 
worth? 

4 • How Much Profit? 

The amazing thing about this puzzle is that people always 
seem to fight over the answer! Yes, different people work it 
out in different ways and come up with different answers, 
and each insists his answer is correct. The puzzle is this: 

A dealer bought an article for $7, sold it for $8, bought it 
back for $9, and sold it for $10. How much profit did he 
make? 

5 • Problem of the Ten Pets 

The instructive thing about this puzzle is that although it can 
easily be solved by using elementary algebra, it can also be 
solved without any algebra at all-just by plain common 
sense. Moreover, the common-sense solution is, in my judg
ment, far more interesting and informative-and certainly 
more creative-than the algebraic solution. 

Fifty-six biscuits are to be fed to ten pets; each pet is either 
a cat or a dog. Each dog is to get six biscuits, and each cat is 

to get five. How many dogs and how many cats are there? 
Any reader familiar with algebra can get this immediately. 

Also, the problem can be solved routinely by trial and error: 
there are eleven possibilities for the number of cats (any
where from zero to ten), so each possibility can be tried until 
the correct answer is found. But if you look at this problem in 
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just the right light, there is a surprisingly simple solution that 
involves neither algebra nor trial-an d-e rror. So, I urge even 
those of you who have gotten the answer by your own 
metho d to consult the solution I give. 

6 • Lar ge Bir ds and Small Birds 

Here is another puzzle that can be solved either by algebra or 
by common sense, and again I prefer the common-sense 
sol ution. 

A certain pet shop sells large birds and small bir ds; each 
large bird fetches twice the price of a small one. A lady came 
in an d purchase d five large birds and three small ones. If, in
stead, she had bought three large birds and five small bir ds, 
she woul d have spent $20 less. What is the pri ce of each bird? 

7 • The Disadvan ta ges o f  Bein g 
Absen t-minded 

The following story happens to be true: 
It is well known that in any group of at least 23 people, the 

o dds are greater than 50 percent that at least two of them 
will have the same birthday. Now, I was once teaching an un
dergraduate mathematics class at Princeton, an d we were 
doing a little elementary probability theory . I explaine d to 
the class that with 30 people instead of 23, the o dds woul d 
become enormously high that at least two of them had the 
same birthday. 

"Now," I continue d, "since there are only nineteen stu
dents in this class, the o dds are much less than fifty percent 
that any two of you have the same birthday." 

At this point one of the students raise d his han d an d sai d, 
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' 'I 'll bet you that at least two of us here have the same birth
day." 

"It wouldn 't be right for me to take the bet," I replied, 
"because the probabilities would be highly in my favor ." 

"I don 't care," said the student, ' 'I 'll bet you anyhow!"  
"All right," I said, thinking to teach the student a good les

son. I then proceeded to call on the students one by one to 
announce their birthdays until, about hal fway through, both 
I and the class burst out laughing at my stupidity. 

The boy who had so confidently made the bet did not know 
the birthday of anyone present except his own. Can you guess 
why he was so confident? 

8 • Repu bli cans and Demo cra ts 

In a certain lodge, each member was either a Republican or a 
Democrat. One day one of the Democrats decided to become 
a Republican, and after this happened, there was the same 
number of Republicans as Democrats. A few weeks later, the 
new Republican decided to become a Democrat again, and so I 

things were back to normal. Then another Republican de
cided to become a Democrat, at which point there were 
twice as many Democrats as Republicans. 

Ho w many members did the lodge contain? 

9 • A New "Co lored Ha ts "  Pro blem 

Three subjects-A, B, and C-were all perfect logicians. 
Each could instantly deduce all consequences of any set of 
premises. Also, each was aware that each of the others was a 
perfect logician. The three were shown seven stamps: two 
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red ones, two yellow ones, and three green ones. They were 
then blindfolded, and a stamp was pasted on each of their 
foreheads; the remaining four stamps were placed . in a 
drawer. When the blindfolds were removed, A was asked, 
"Do you know one color that you definitely do not have?" A 
replied, "No." Then B was asked the same question and re
plied, "No." 

Is it possible, from this information, to deduce the color of 
A's stamp, or of B's, or of C's? 

10 • For Those Who Know the 
Rules o f  Chess 

I would like to call your attention to a fascinating variety of 
chess problem which, unlike the conventional chess prob
lem-White to play and mate in so-many moves-involves 
an analysis of the past history of the game: how the position 
arose. 

Inspector Craig of Scotland Yard, � whose interest in this 
type of problem was equal to that of Sherlock Holmes, t once 
walked with a friend into a chess club, where they came 
across an abandoned chessboard. 

"Whoever played this game," said the friend, "certainly 
doesn't know the rules of chess. The position is quite impos
sible!" 

"Why?" asked Craig. 
"Because," replied the friend, "Black is now in check from 

both the White rook and the White bishop. How could 
White possibly have administered this check? If he has just 

• Inspector Craig is a character from my previous book of logic puzzles, 
What Is the Name of This Book? 

t My book The Chess Mysteries of Sherlock Holmes contains many puzzles of 
this genre. 
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THE L A DY OR THE T I GER? 

moved the rook, the Black king would already be in check 
from the bishop, and if he has just moved the bishop, the king 
would already be in check from the rook. So, you see, the po
sition is impossible." 

Craig studied the position for a while. "Not so," he said, 
"the position, though exceedingly bizarre, is well within the 
bounds of legal possibilities." 

Craig was absolutely right! Despite all appearances to the 
contrary, the position really is possible, and it can be deduced 
what "White's last move was. "What was it? 

• SO LUTIONS . 

1 • A common wrong answer is $10. Now, suppose we each 
had, say, $50. If I gave you $10, you would then have $60 and 
I would have only $40; hence you would have

· $20 more than 
I, rather than $10. 

The correct answer is $5. 

2 • A fairly common answer is "50 honest and 50 crooked." 
Another rather frequent one is "51 honest and 49 crooked." 
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Both answers are wrong! Now let us see how to find the cor
rect solution. 

We are given that at least one person is honest. Let us pick 
out any one honest person, whose name, say, is Frank. Now 

pick any of the remaining 99; call him John. By the second 
given condition, at least one of the two men-Frank, JoOO
is crooked. Since Frank is not crooked, it must be John. Since 
John arbitrarily represents any of the remaining 99 men, then 
each of those 99 men must be crooked. So the answer is that 
one is honest and 99 are crooked. 

Another way of proving it is this: The statement that given 
any two, at least one is crooked, says nothing more nor less 
than that given any two, they are not both honest; in other 
words, no two are honest. This means that at most one is 
honest. Also (by the first condition), at least one is honest. 
Hence exactly one is honest. 

Do you prefer one proof to the other? 

3 • A common wrong answer is $1. Now, if the bottle were 
really worth a dollar, then the wine, being worth $9 more 
than the bottle, would be worth $10. Hence the wine and 
bottle together would be worth $11. The correct answer is 
that the bottle is worth 50¢ and the wine is worth $9.50. 
Then the two add up to $10. 

4 • Some argue as follows: After having bought the article 
for $7 and sold it for $8, he has made a dollar profit. Then, by 
buying the article back for $9 after having sold it for $8, he 
loses a dollar; hence at this point he is even. But then (the ar
gument continues) by selling for $10 what he has bought for 
$9, he has made a dollar again; therefore, his total profit is $1. 

Another argument leads to the conclusion that the dealer 
broke even: When he sold the article for $8 after having 
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bought it for $7, he made $1 profit. But then he loses $2 by 
buying back for $9 the item for which he originally paid $7, 
and so at this point he is $1 in the hole. Then he g ets back the 
dollar by selling for $10 the article for which he last paid $9, 
and so now he is even. 

Both arguments are wrong; the correct answer is that the 
dealer made $2. There are several ways to arrive at this--one 
such goes as follows: First, after selling for $8 the article for 
which he has paid $7, he has clearly made $1 . Now, suppose 
that instead of buying back the same article for $9 and,then 
selling it for $10, he were to buy a different article for $9 and 
sell it for $10. Would this really be any different from a 
purely economic point of view? Of course not! He would ob
viously, then, be making another dollar on the buying and 
selling of this second article. Thus, he has made $2. 

Another and ve ry simple proof: The de aler's total outlay is 
$7 + $9 = $16, an d his total return is $8 + $10 = $18, giving 
a profit of $2. 

For those not convinced by these arguments, let us suppose 
that the dealer has a certain amount of money -say, $10 0-
at the opening o f  the day and that he makes just these four 
deals. How much will he have at the close of the day? Well, 
first he pays $7 for the article, leaving him with $93. Then he 
sells the article for $8, giving him $101 .  Next he buys the ar
ticle back for $9, bringing him down to $92. Finally, he sells 
the article for $10 and thus winds up with $102. So he has 
starte d the day with $100 and en de d  it with $102. How, then, 
coul d his profit be anything other than $2? 

5 • The solution I have in mind is this : First feed five biscuits 
to each of the ten pets; this leaves six biscuits. Now, the cats 
have already had their portion! Therefore, the six remain
ing biscuits are for the dogs, and since each dog is to get 

10 
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one more biscuit, there must be six dogs, and thus four cats. 
Of course, we can check out the solution: Six dogs each 

getting six biscuits accounts for thirty-six biscuits. Four cats 
each getting five biscuits accounts for twenty biscuits. The 
total (36 + 20) is 56, as it should be. 

6 • Since each large bird is worth two small birds, then five 
large birds are worth ten small birds. Hence five large birds 
plus three small birds are worth thirteen small birds. On the 
other hand, three large birds plus five small birds are worth 
eleven small birds. So the difference between buying five 
large and three small birds or buying three large and five 
sman birds is the same as the difference between buying thir
teen small birds and buying eleven small birds, which is two 
small birds. We know that the difference is $20. So two small 
birds are worth $20, which means one small bird is worth 
$10. 

Let us check: A small bird is worth $10, and a large bird 
$2 0. Therefore, the lady's bill for five large and three small 
birds was $130. Had she bought three large and five small 
birds, she would have spent $1 10, which is indeed $20 less. 

7 • At the time I accepted the bet from the student, I had 
totally forgotten that two of the other students, who always 
sat next to each other, were identical twins. 

8 • There were twelve members: seven Democrats and five 
Republicans. 

9 • The only one whose color can be determined is C. If C's 
stamp were red, then B would have known that his stamp 
was not red by reasoning: "If my stamp were also red, then A, 
seeing two red stamps, would know that his stamp is not red. 

1 1  



THE L A DY OR THE T I GE R? 

But A does not know that his stamp is not red. Therefore, my 
stamp cannot be red." 

This proves that if C's stamp were red, then B would have 
known that his stamp was not red. But B did not know that 
his stamp was not red; therefore, C's stamp cannot be red. 

The same argument, replacing the word red with yellow, 
shows that C's stamp cannot be yellow either. Therefore, C's 
stamp must be green. 

10 • It is not given which side of the board is White and 
which side is Black. It may well appear that White is moving 
up the board, but if he really were, then the position would 
be impossible! The truth is that White must be moving down 
the board, and that before the last move, the position was 
this: 

The circle on the lower left-hand square represents some 
Black piece (either a queen, rook, bishop, or knight; there is 
no way to know which). The White pawn then captures this 
Black piece and promotes to a rook, bringing the game to the 
present position. 
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Of course, one might wen ask: "Why did White promote 
to a rook instead o f  a queen; is this not highly improbable?" 
The answer is that indeed it is highly improbable, but that 
any other last move is not merely improbable but impossible, 
and as Sherlock Holmes so wisely said to Watson: "When we 
have eliminated the impossible, whatever remains, however 
improbable, must be the truth." 



Ladies or 

Tigers? 

Many of you are familiar with Frank Stockton's story "The 
Lady or the Tiger?," in which the prisoner must choose be
tween two rooms, one of which contains a lady and the other 
a tiger. If he chooses the former, he marries the lady; if he 
chooses the latter, he (probably) gets eaten by the tiger. 

The king of a certain land had also read the story, and it 
gave him an idea. "Just the perfect way to try my prisoners! "  
he said one day to his minister. "Only, I won't leave i t  to 
chance ;  I'll have signs on the doors of the rooms, and in each 
case I'll tell the prisoner c ertain facts about the signs. If the 
prisoner is clever and can reason logically, he'll save his 
life-and win a nice bride to boot !"  

"Excellent idea! " said the minister. 

T H E T RIA L S  O F  T H E  F IR S T  D AY 

On the first day, there were three trials. In all three, the king 
explained to the prisoner that each of the two rooms con
tained either a lady or a tiger, but it could be that there were 
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tigers in both rooms, or ladies in both rooms, or then again, 
maybe one room containe d a lady and the o ther room a tiger. 

1 • The First Trial 

"Suppose both rooms contain tigers," aske d the prisoner. 
' What do I do then?" 

"That's your hard luck!"  replied the king. 
"Suppose both rooms contain ladies?" asked the prisoner. 
"Then, obviously, that's your good luck," replied the king. 

"Surely you could have guesse d the answer to that! "  
"Well, suppose one room contains a lady and the other a 

tiger, what happens then?" asked the prisoner. 
"In that case, it makes quite a difference which room you 

choose, doesn't it?" 
"How do I know which room to choose P" aske d the pris

oner. 
The king pointed to the signs on the doors of the rooms: 

I 

IN THIS ROOM THERE 
IS A LADY, AND IN 
THE OTHER ROOM 
THERE IS A TIGER 

II 

IN ONE OF THESE ROOMS 
THERE IS A LADY, AND 

IN ONE OF THESE ROOMS 
THERE IS A TIGER 

"Is i t  true, what the signs say?" asked the prisoner. 
"One of them is true," replied the king, "but the other one 

is false." 
If you were the prisoner, which door would you open (as

suming, of course, that you preferred the lady to the tiger)? 



T H E  L A D Y  O R  T H E  T I G E R ?  

.2 • The Se oond Trial 

And so, the first prisoner saved his life and made off with the 
lady. The signs on the doors were then changed, and new oc
cupants for the rooms were selected accordingly. This time 
the signs read as follows: 

I 

AT LEAST ONE OF THESE 
ROOMS CONTAINS A LADY 

II 

A TIGER IS IN 
THE OTHER ROOM 

"Are the statements on the signs true?" asked the second 
prisoner. 

"They are either both true or both false," replied the king. 
Which room should the prisoner pick? 

3 • The Thir d Trial 

In this trial, the king explained that, again, the signs were 
either both true or both false. Here are the signs: 

I 

EITHER A TIGER IS IN 
THIS ROOM OR A LADY IS 

IN THE OTHER ROOM 

II 

A LA DY IS IN 
THE O THER ROO M  

Does the first room contain a lady or a tiger? What about 
the other room? 



LA D IE S  OR T I G E R S ? 

THE SE C ON D  D AY 

"Yesterday was a fiasco," said the king to his minister. "All 
three prisoners solved their puzzles! Well, we have five trials 
coming up today, and I think I'n make them a little tougher." 

"Excellent idea!" said the minister. 
Well, in each of the trials of this day, the king explained 

that in the lefthand room (Room I), if a lady is in it, then the 
sign on the door is true, but if a tiger is in it, the sign is false. 
In the righthand room (Room II) , the situation is the oppo
site : a lady in the room means the sign on the door is false, 
and a tiger in the room means the sign is true. Again, it is 
possible that both rooms contain ladies or both rooms contain 
tigers, or that one room contains a lady and the other a tiger. 

4 • The Fourth Trial 

After the king explained the above rules to the prisoner, he 
pOinted to the two signs: 

I 

BO T H  ROOM S 

CONTAIN LADIES 

II 

BOT H ROOM S 

CONTAIN LADIES 

Which room should the prisoner pick? 
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5 • The Fifth T rial 

The same rules apply, and here are the signs: 

I 

AT LE AST ONE ROOM 

CONTAINS A LADY 

II 

T H E  OTHER ROOM 

CONTAINS A LADY 

6 • The S ixth T rial 

The king was particularly fond of this puzzle, and the next 
one too. Here are the signs: 

I 

IT MAKES NO DIFFERENCE 

WHICH ROOM YOU PICK 

What should the prisoner do? 

II 

THERE IS A LADY 
IN THE OT HER ROOM 

7 • The Seven th  T rial 

Here are the signs: 

I 

IT DOES M A KE A 

DIFFERE NCE W H IC H  

ROOM YOU PIC K 

"What should the prisoner do? 

II 

YOU ARE BETTER 

OFF C H OOS ING T H E  

OT HER ROOM 



LA D I E S  OR T I G E R S ? 

8 • The Eighth Trial 

"There are no signs above the doors! "  exclaimed the prisoner. 
"Quite true," said the king. "The signs were just made, and 

I haven't had time to put them up yet."  
"Then how do you expect me to choose?" demanded the 

prisoner. 
"Well, here are the signs," replied the king. 

T H IS ROOM 

CONTAINS 

A TIGER 

BOTH ROOM S 

CONTAIN 

TIGERS 

"That's all wen and good," said the prisoner anxiously, 
"but which sign goes on which door?" 

The king thought awhile. "I needn't ten you," he said. 
"You can solve this problem without that information. 

"Only remember, of course," he added, "that a lady in the 
lefthand room means the sign which should be on that door is 
true and a tiger in it means the sign should be false, and that 
the reverse is true for the righthand room." 

What is the solution? 

T H E  T H I R D  DA Y 

"Confound it! " said the king. "Again all the prisoners won! I 
think tomorrow I'll have three rooms instead of two; I 'll put a 
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lady in one room and a tiger in each of the other two rooms. 
Then we'll see how the prisoners fare! "  

"Excellent ideal" replied the minister. 
"Your conversation, though flattering, is just a hit on the 

repetitious side ! "  exclaimed the king. 
"Excellently putl " replied the minister. 

9 • The Ninth Trial 

Well, on the third day, the king did as planned. He offered 
three rooms to choose from, and he explained to the prisoner 
that one room contained a lady and the other two contained 
tigers. Here are the three signs: 

I 

A TIGER 

IS IN 

THIS ROOM 

II 

A LADY 

IS IN 

THIS ROOM 

III 

A TIGER 

IS IN 

ROOM II 

The king explained that at most one of the three signs was 
true. Which room contains the lady? 

10 • The Tenth Trial 

Again there was only one lady and two tigers. The king ex
plained to the prisoner that the sign on the door of the room 
containing the lady was true, and that at least one of the 
other two signs was false. 

Here are the signs: 
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I 

A TIGER IS 
IN RO OM U 

II 

A TIGER IS 
IN THIS ROOM 

What should the prisoner do? 

HI 

A TIGER IS 
IN ROOM I 

1 1  • F ir st, Se cond, and T hird C ho ice 

In this more whimsical trial, the king explained to the pris
oner that one of the three rooms contained a lady, another a 
tiger, and the third room was empty. The sign on the door of 
the room containing the lady was true, the sign on the door of 
the room with the tiger was false, and the sign on the door of 
the empty room could be either true or false. Here are the 
signs: 

I 

ROOM III 
IS EMPTY 

II 

THE TIGER IS 
IN ROOM I 

III 

THIS RO OM 
IS EMPTY 

Now, the prisoner happened to know the lady in question 
and wished to marry her. Therefore, although the empty 
room was preferable to the one with the tiger, his first choice 
was the room with the lady. 

Which room contains the lady, and which room contains 
the tiger? If you can answer these two questions, you should 
have little difficulty in also determining which room is 
empty. 

2 1  
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T H E F OURT H D A Y 

"Horrible! "  said the king. "It seems I can't make my puzzles 
hard enough to trap these fellows! Well, we have only one 
more trial to go, but this time I'll really give the prisoner a 
run for his money!" 

12 • A Logical Labyrin th 

Well, the king was as good as his word. Instead of having 
three rooms for the prisoner to choose from, he gave him 
nine! As he explained, only one room contained a lady; each 
of the other eight either contained a tiger or was empty. And, 
the king added, the sign on the door of the room containing 
the lady is true; the signs on doors of all rooms containing 
tigers are false; and the signs on doors of empty rooms can be 
either true or false. 

Here are the signs: 

I II III 

T HE LADY EITHER SIGN V 
IS IN AN THIS ROOM IS RIGHT 

ODD-N UMBERED IS EMPTY OR S IGN VII 
R OOM IS WR ONG 

IV V V I  

S IGN I EITHE R SIGN II SIGN III 
IS WRONG OR SIGN IV IS WR ONG 

IS RIGH T 
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VII 

THE LADY 

IS NOT IN 

ROOM! 

LA DIES OR T I G E R S ? 

VIII 

T H IS ROOM 

CONTAINS 

A TIGER 

AND ROOM IX 

IS E MPTY 

IX 

T H IS ROOM 

CONTAINS 

A TIGER 

AND VI 

IS WRONG 

The prisoner studied the situation for a long while. 
"The problem is unsolvable ! "  he exclaimed angrily. 

"That's not fair! "  
"I know," laughed the king. 
"Very funny!"  replied the prisoner. "Come on, now, at 

least give me a decent clue : is Room Eight empty or not?" 
The king was decent enough to tell him whether Room 

VIn was empty or not, and the prisoner was then able to de
duce where the lady was. 

Which room contained the lady? 

• S O L U T I O N S . 

1 • We are given that one of the two signs is true and the 
other false . Could it be that the first is true and the second 
false? Certainly not, because if the first sign is true, then the 
second sign must also be true-that is, if there is a lady in 
Room I and a tiger in Room .H, then it is certainly the case 
that one of the rooms contains a lady and the other a tiger. 
Since it is not the case that the first sign is true and the sec
ond one false, then it must be that the second sign is true and 
the first one false .. Since the second sign is true, then there 
really is a lady in one room and a tiger in the other. Since the 
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first sign is false, then it must be that the tiger is in Room I 
and the lady in Room n. So the prisoner should choose Room 
n . 

.2 • If Sign II is false, then Room I contains a lady; hence at 
least one room contains a lady, which makes Sign I true. 
Therefore, it is impossible that both signs are false. This 
means that both signs are true (since we are given that they 
are either both true or both false) . Therefore, a tiger is in 
Room I and a lady in Room II, so again the prisoner should 
choose Room II. 

3 • The king must have been in a generous mood this time, 
because both rooms contain ladies !  We prove this as follows: 

Sign I says in effect that at least one of the following alter
natives holds : there is a tiger in Room I; there is a lady in 
Room n. (fhe sign does not preclude the possibility that both 
alternatives hold.) 

Now, if Sign II is false, then a tiger is in Room I, which 
makes the first sign true (because the first alternative is then 
true) . But we are given that it is not the case that one of the 
signs is true and the other one false . Therefore, since Sign II is 
true, both signs must be true. Since Sign II is true, there is a 
lady in Room I. This means that the first alternative of Sign 
I is false, but since at least one of the alternatives is true, 
then it must be the second one. So there is a lady in Room II 
also. 

4 • Since the signs say the same thing, they are both true or 
both false. Suppose they are true; then both rooms contain 
ladies .  This would mean in particular that Room II contains a 
lady. But we have been told that if Room II contains a lady, 
the sign is false. This is a contradiction, so the signs are not 
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true ; they are both false .  Therefore, Room I contains a tiger 
and Room II contains a lady. 

5 • If the first room contains a tiger, we get a contradiction. 
Because if it does contain a tiger, then the first sign is false, 
which would mean that neither room contains a lady; both 
rooms would contain tigers. But we have been told that a 
tiger in the second room indicates that the second sign is 
true, which would mean that the other room contains a lady, 
contrary to the assumption that the first room contains a 
tiger. So it is impossible for the first room to contain a tiger; it 
must contain a lady. Therefore, what the second sign says is 
true, and the second room contains a tiger. So the first room 
contains a lady and the second room contains a tiger. 

6 • The first sign says, in effect, that either both rooms con
tain ladies or both contain tigers--that is the only way it 
could make no difference which room is picked. 

Suppose the first room contains a lady. Then the first sign is 
true, which means the second room also contains a lady. Sup
pose, on the other hand, the first room contains a tiger. Then 
the first sign is false, which means that the two occupants are 
not the same, so again the second occupant is a lady. This 
proves that Room II must contain a lady regardless of what is 
in Room I. Since Room II contains a lady, Sign II is false and 
Room I must contain a tiger. 

7 • The first sign says in effect that the two occupants are 
different (one a lady and the other a tiger) , but doesn't say 
which room contains which. If Room I's occupant is a lady, 
the sign is true ; hence Room II must contain a tiger. If, on th� 
other hand, Room I's occupant is a tiger, then the first sign is 
false, which means that the two occupants are not really dif-
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ferent, so Room II must also contain a tiger. Therefore, Room 
II definitely contains a tiger. This means that the second sign 
is true, so a lady must be in the first room. 

8 • Suppose the top sign, THIS ROOM CONTAINS A TIGER, were 
on the door of Room 1. If a lady is in the room, the sign is 
false, violating the conditions given by the king. If a tiger is in 
the room, the sign is true, which again violates the king's 
conditions. So that sign can't be on the first door; it must be 
on the second. This means the other sign is to be put on the 
first door. 

The sign belonging on the first door thus reads: BOTH 

ROOMS CONTAIN TIGERS. SO the first room can't contain a lady, 
or the sign would be true, which would mean that both rooms 
contain tigers-an obvious contradiction. Therefore, the first 
room contains a tiger. From this it follows that the sign is 
false, so the second room must contain a lady. 

9 • Signs II and III contradict each other, so at least one of 
them is true. Since at most one of the three signs is true, then 
the first one must be false, so the lady is in Room I .  

10 • Since the sign of the room containing the lady is true, 
then the lady certainly can't be in Room II. If she is in Room 
III, then all three signs must be true, which is contrary to 
the given condition that at least one sign is false. Therefore, 
the lady is in Room I (and sign II is true and sign III is 
false) . 

1 1  • Since the sign on the door of the room containing the 
lady is true, then the lady cannot be in Room III. 

Suppose she is in Room II. Then sign II would be true; 
hence the tiger would be in Room I and Room III would be 
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empty. This would mean that the sign on the door of the 
tiger's room would be true, which is not possible. Therefore, 
the lady is in Room I; Room HI must then be empty, and the 
tiger is in Room H. 

12 • If the king had told the prisoner that Room VIII was 
empty, it would have been impossible for the prisoner to 
have found the lady. Since the prisoner did deduce where the 
lady was, the king must have told him that Room VIII was 
not empty, and the prisoner reasoned as follows: 

"It is impossible for the lady to be in Room Eight, for if she 
were, Sign Eight would be true, but the sign says a tiger is in 
the room, which would be a contradiction. Therefore, Room 
Eight does not contain the lady. Also, Room Eight is not 
empty; therefore, Room Eight must contain a tiger. Since it 
contains a tiger, the sign is false. Now, if Room Nine is 
empty, then Sign Eight would be true; therefore, Room Nine 
cannot be empty. 

"So, Room Nine is also not empty. It cannot contain the 
lady, or the sign would be true, which would mean that the 
room contains a tiger; this means Sign Nine is false. If Sign 
Six is really wrong, then Sign Nine would be true, which is 
not possible. Therefore, Sign Six is right. 

"Since Sign Six is right, then Sign Three is wrong. The only 
way Sign Three can be wrong is that Sign Five is Wrong and 
Sign Seven is right. Since Sign Five is wrong, then Sign Two 
and Sign Four are both wrong. Since Sign Four is wrong, then 
Sign One must be right. 

"Now I know which signs are right and which signs are 
wrong-namely: 

"1 - Right 
2- Wrong 
3 - Wrong 

4- Wrong 
5 - Wrong 
6 - Right 
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"I  now know that the lady is in either Room One, Room 
Six, or Room Seven, since the others all have false signs. Since 
Sign One is right, the lady can't be in Room Six. Since Sign 
Seven is right, the lady can't be in Room One. Therefore, the 
lady is in Room Seven." 
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The Asylum of 

Doctor Tarr and 

Professor Fether 

Inspector Craig of Scotland Yard was called over to France 
to investigate eleven insane asylums where it was suspected 
that something was wrong. In each of these asylums, the only 
inhabitants were patients and doctors--the doctors consti
tuted the entire staff. Each inhabitant of each asylum, patient 
or doctor, was either sane or insane. Moreover, the sane ones 
were totally sane and a hundred percent accurate in all their 
beliefs; all true propositions they knew to be true and all false 
propositions they knew to be false. The insane ones were to
tally inaccurate in their beliefs; all true propositions they be
lieved to be false and all false propositions they believed to 
be true. It is to be assumed also that all the inhabitants were 
always honest-whatever they said, they really believed . 

.l • The Firs t As ylum 

In the first asylum Craig visited, he spoke separately to two 
inhabitants whose last names were Jones and Smith. 

"Tell me," Craig asked Jones, "what do you know about 
Mr. Smith?" 
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"You should can him Doctor Smith," replied Jones.  "He is 
a doctor on our staff." 

Sometime later, Craig met Smith and asked, "What do you 
know about Jones? Is he a patient or a doctor?" 

"He is a patient," replied Smith. 
The inspector mulled over the situation for a while and 

then realized that there was indeed something wrong with 
this asylum: either one of the doctors was insane, hence 
shouldn't be working there, or, worse still, one of the patients 
was sane and shouldn't be there at all. 

How did Craig know this? 

2 • The Se cond A sylum 

In the next asylum Craig visited, one of the inhabitants made 
a statement from which the inspector could deduce that the 
speaker must be a sane patient, hence did not belong there . 
Craig then took steps to have him released. 

Can you supply such a statement? 

3 • The Th ird A sylum 

In the next asylum, an inhabitant made a statement from 
which Craig could deduce that the speaker was an insane 
doctor. Can you supply such a statement? 

4 • The Four th A sylum 

In the next asylum, Craig asked one of the inhabitants, "Are 
you a patient?" He replied, "Yes." 

Is there anything necessarily wrong with this asylum? 
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5 • The F ifth A syl um 

In t he next asylum, Craig aske d one of the inhabitants, "Are 
you a patient?" He replie d, "I believe so ." 

Is there anything necessarily wrong with this asylum? 

6 • The S ixth A syl um 

In the next asylum Craig visite d, he aske d an inhabitant, "Do 
you believe you are a patient?" The inhabitant replie d, "I 
believe I do ." 

Is there anything necessarily wrong with this asylum? 

7 • The Se ven th A syl um 

Craig fo un d  the next asylum more interesting. He met two 
inhabitants, A an d B, an d foun d out that A believe d that B 
was insane an d B believe d that A was a doctor. Craig then 
took measures to have one of the two remove d. Which one, 
and why? 

8 • The E igh th A sylu m 

The next asylum prove d to be quite a puzzler, but Craig fi
nally manage d to get to the bottom of things. He found out 
that the following con ditions prevaile d: 

1 .  Given any two inhabitants, A an d B, either A trusts B or 
he doesn't. 

2. Some of the inhabitants are teachers of other inhabi
tants. Each inhabitant has at least one teacher. 
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3. No inhabitant A is w illing to be a teacher of an inhabi
tant B unless A belie ves that B trusts himself. 

4- For any inhabitant A there is an inhabitant B who trusts 
all and only those inhabitants who have at least one teacher 
who is truste d by A. (I n other words, for any inhabitant X, B 
trusts X if A trusts some teacher of X, an d B doesn't trust X 
unless A trusts some teacher of X.) 

5. There is one inhabitant who trusts all the patients but 
does not trust any of the doctors. 

Inspector Craig thought this over for a long time an d was 
finally able to prove that either one of the patients was sane 
or one of the doctors was insane. Can you fin d the proof? 

9 • The N in th A sylum 

In this asylum, Craig interviewe d four inhabitants : A, B, C, 
an d D. A believe d that B an d C were alike as far as their san
ity was concerne d. B believe d that A and D were alike as far 
as their sanity was concerne d. Then Craig aske d C, "Are you 
an d D both doctors?" C replie d, "No." 

Is there anything wrong with this asylum? 

10 • The Ten th A sylum 

Inspector Craig found this case particularly interesting, 
though difficult to crack. The first thing he discovere d was 
that the asylum's inhabitants had forme d various committees. 
Doctors and patients, he learne d, coul d serve on the same 
committee and sane an d insane persons might be on the same 
committee. Then Craig foun d out the following facts: 

1. All patients forme d one committee. 
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2. All doctors forme d one comm ittee. 
3. Each inhabitant had several fr ien ds in the asylum, an d  

among them one who-was h is best fr ien d. Also, each inhabi
tant had several enemies in the asylum, an d among them one 
calle d his worst enemy. 

4. Given any committee, C, all inhabitants whose best 
fr ien d was on C forme d a comm ittee, an d all inhabitants 
whose worst enemy was on C also forme d a committee . 

5 .  Given any two committees-Committee 1 an d Com
mittee 2-there was at least one inhabitant, D, whose best 
frien d believe d that D was on Committee 1 an d whose wors t 
enemy bel ieve d that D was on Comm ittee 2. 

Putt ing all these facts together, Craig foun d an ingenious 
proof that either one of the doctors was insane or one of the 
patients was sane . How di d Craig know this? 

11 • An Added P uzzle 

Craig l ingere d for a while in th is last asylum, because certain 
other questions caught his theoretical fancy. For example, he 
was curious to know whether all sane inhabitants forme d a 
committee an d all insane inhabitants forme d a committee. 
He coul d not settle these questions on the basis of facts 1 , 2, 
3, 4, an d 5,  but he was able to prove-an d just on the bas is of 
3, 4, an d s-that it was not possible for both of these groups 
to have formed committees. How di d he prove this? 

12 • Ano ther P uzz le A bo ut the S ame A sy lum 

Finally, Craig was able to prove something else about this 
same asylum. He regarde d  it as quite Significant, an d in fact it 
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simplified the solutions of the last two problems. It is, 
namely, that given any two committees-Committees 1 and 
2-there must be an inhabitant E and an inhabitant F who 
believe as follows : E that F serves on Committee 1, and F 
that E serves on Committee 2. How did Craig prove this? 

13 • The A sylu m o f  Do ctor T an and Pro fe ssor Fe ther 

The last asylum Craig visited he found to be the most bizarre 
of all . This asylum was run by two doctors named Doctor 
Tarr and Professor Fether. There were other doctors on the 
staff as well. Now, an inhabitant was called peculiar if he be
lieved that he was a patient. An inhabitant was called special 
if all patients believed he was peculiar and no doctor be
lieved he was peculiar. Inspector Craig found out that at 
least one inhabitant was sane and that the following condi
tion held: 

Condition C: Each inhabitant had a best friend in the asy
lum. Moreover, given any two inhabitants, A and B, if A be
lieved that B was special, then A's best friend believed that B 
was a patient. 

Shortly after this discovery, Inspector Craig had private 
interviews with Doctor Tarr and Professor Fether. Here is 
the interview with Doctor Tarr: 

Craig: Ten me, Doctor Tarr, are all the doctors in this asy-
lum sane? 

Tarr: Of course they are ! 
Craig: What about the patients? Are they all insane? 
Tarr: At least one of them is. 
The second answer struck Craig as a surprisingly modest 

claim! Of course, if all the patients are insane, then it cer
tainly is true that at least one is. But why was Doctor Tarr 
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being so cautious? Craig then had his interview with Profes
sor Fether, which went as follows: 

Craig: Doctor Tarr said that at least one patient here is in
sane. Surely that is true, isn't it? 

Professor Fether: Of course it is truel All the patients in this 
asylum are insane ! What kind of asylum do you think we are 
running? 

Craig: What about the doctors? Are they all sane? 
Professor Fether: At least one of them is. 
Craig: What about Doctor Tarr? Is he sane? 
Professor Fether: Of course he is! How dare you ask me 

such a question? 
At this point, Craig realized the full horror of the situation! 

What was it? 
(Those who have read "The System of Doctor Tarr and 

Professor Fether," by Edgar Allan Poe, will probably guess 
the solution before they prove it is correct. See remarks fol
lowing the solution.) 

• S O L U T IO N S . 

1 • We will prove that either Jones or Smith (we do not 
know which) must be either an insane doctor or a sane pa
tient (but again we don't know which) . 

Jones is either sane or insane. Suppose he is sane. Then his 
belief is correct; hence Smith really is a doctor. If Smith is 
insane, then he is an insane doctor. If Smith is sane, then his 
belief is correct, which means that Jones is a patient and 
hence a sane patient (since we are assuming Jones to be sane) . 
This proves that if Jones is sane, then either he is a sane pa
tient or Smith is an insane doctor. 
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Suppose Jones is insane. Then his belief is wrong, which 
makes Smith a patient. If Smith is sane, then he is a sane pa
tient. If Smith is insane, then his belief is wrong, which makes 
Jones a doctor, hence an insane doctor. This proves that if 
Jones is insane, then either he is an insane doctor or Smith is a 
sane patient. 

To summarize, if Jones is sane, then either he is a sane 
patient or Smith is an insane doctor. If Jones is insane, 
then either he is an insane doctor or Smith is a sane 
patient. 

2 • Many solutions are possible. The simplest I can think of 
is that the inhabitant said, "1 am not a sane doctor."  We then 
prove that the speaker must be a sane patient as follows: 

An insane doctor could not hold the true belief that he is 
not a sane doctor. A sane doctor could not hold the false be
lief that he is not a sane doctor. An insane patient could not 
hold the true belief that he is not a sane doctor (an insane 
patient is in fact not a sane doctor) . So the speaker was a 
sane patient, and his belief that he was not a sane doctor was 
correct. 

3 • One statement which would work is: "I am an insane 
patient." A sane patient could not hold the false belief that 
he is an insane patient. An insane patient could not hold the 
true belief that he is an insane patient. Therefore, the speaker 
was not a patient; he was a doctor. A sane doctor could never 
believe that he is an insane patient. So the speaker was an in
sane doctor, who held the false belief that he was an insane 
patient. 

4 • The speaker believes that he is a patient. If he is sane, 
then he really is a patient; hence he is a sane patient and 
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shouldn't be in the asylum. If he is insane, his belief is wrong, 
which means that he is not a patient but a doctor; hence he is 
an insane doctor and shouldn't be on the staff. It is not possi
ble to tell whether he is a sane patient or an insane doctor, 
but in neither case should he be in this asylum. 

5 • This is a very different situation! Just because the 
speaker says that he believes he is a patient does not neces
sarily mean that he does believe he is a patientl Since he says 
he believes he is a patient, and he is honest, then he believes 
that he believes he is a patient. Suppose he is insane. Then his 
beliefs are all wrong�ven those about his own beliefs--so 
his believing that he believes he is a patient indicates that it 
is false that he believes he is a patient, and therefore he ac
tually believes that he is a doctor. Since he is insane and be
lieves he is a doctor, then he is in fact a patient. So if he is 
insane, he is an insane patient. On the other hand, suppose he 
is sane. Since he believes that he believes he is a patient, then 
it is true that he believes he is a patient. Since he believes he 
is a patient, then he is a patient. So, if he is sane, then again 
he is a patient. We see, therefore, that he could be either a 
sane patient or an insane patient, and we have no grounds for 
finding anything wrong with this asylum. 

More generally, let us note the following basic facts: If an 
inhabitant of this asylum believes something, then that some
thing is true or false depending on whether the believer is 
sane or insane. But if an inhabitant believes that he believes 
something, then the something must be true, regardless of 
whether the believer is sane or insane. (If he is insane, the 
two beliefs cancel each other; analogously to the negative of 
a negative making a positive.) 

6 • In this case, the speaker didn't claim that he was a pa
tient nor that he believed he was a patient; he claimed that 
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he believed that he believed he was a patient. Since he be
lieved what he claimed, then he believed that he believed 
that he believed that he was a patient. The first two beliefs 
cancel each other out (see last paragraph of the solution to 
the last problem) , so in fact he believed that he was a patient. 
The problem then reduces to that of the fourth asylum, 
which we have already solved (the speaker must be either a 
sane patient or an insane doctor) . 

7 • Craig had A removed. Reason: Suppose A is sane. Then 
his belief that B is insane is correct. Since B is insane, his be
lief that A is a doctor is wrong, so A is a sane patient and 
should be removed. Suppose, on the other hand, that A is in
sane. Then his belief that B is insane is wrong, so B is sane. 
Then B's belief that A is a doctor is correct, so in this case A is 
an insane doctor who should be removed. 

Nothing at all can be deduced about B.  

8 • By condition 5, there is  an inhabitant-call him 
Arthur-who trusts all patients but no doctors . By condition 
4, there is an inhabitant-call him Bill-who trusts just those 
inhabitants who have at least one teacher who is trusted by 
Arthur. This means that for any inhabitant X, if Bill trusts X, 
then Arthur trusts at least one teacher of X, and if Bill doesn't 
trust X, then Arthur trusts no teacher of X. Since being 
trusted by Arthur is the same thing as being a patient (by 
condition 5), then we can rephrase the last sentence as fol
lows : For any inhabitant X, if Bill trusts X, then at least one 
teacher of X is a patient, and if Bill doesn't trust X, then no 
teacher of X is a patient. Now, since this holds for every in
habitant X, then it also holds when X is Bill himself. There
fore, we know the following: 

(1) If Bill trusts himself, then Bill has at least one teacher 
who is a patient. 
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(2) If Bill doesn't trust himself, then no teacher of Bill is a 
patient. 

There are two possibilities : either Bill trusts himself or he 
doesn't. Let us now see what is implied by each case. 

Case �-Bill trusts himself: Then Bill has at least one 
teacher-call him Peter-who is a patient. Since Peter is a 
teacher of Bill, then Peter believes that Bill trusts himself 
(this according to condition 3) . Well, Bill does trust himself, 
so Peter believes truly and is sane. Therefore, Peter is a sane 
patient and should not be in this asylum. 

Case 2-Bill doesn 't trust himself: In this case, none of 
Bill's teachers is a patient. Yet Bill, like every other inhabi
tant, has at least one teacher-call him Richard. Then Rich
ard must be a doctor. Since Richard is a teacher of Bill, then 
Richard believes that Bill trusts himself. His belief is wrong; 
therefore Richard is insane. So Richard is an insane doctor 
and shouldn't be on the staff. 

To summarize : if Bill trusts himself, then at least one pa
tient is sane. If Bill doesn't trust himself, then at least one 
doctor is insane. Since we don't know whether Bill trusts 
himself or not, we don't know just what is wrong with this 
asylum-whether there is a sane patient or an insane doctor. 

9 • We shall first prove that C and D are necessarily alike as 
far as their sanity is concerned. 

Suppose A and B are both sane. Then B and C are really 
alike, and A and D are really alike. This implies that all four 
are sane; hence in this case C and D are both sane, and thus 
alike. Now suppose A and B are both insane. Then B and C 
are different, and so are A and D; hence C and D are both 
sane, and so again alike. Now suppose A is sane and B is in
sane. Then B and C are alike, so C is insane, but A and D are 
different, which means D is also insane. Lastly, suppose A is 
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insane and B is sane. Then B and C are different and so C is 
insane, but A and D are alike; hence D is also insane. 

In summary, if A and B are alike, then C and D are both 
sane; if A and B are different, C and D are both insane. 

Thus, we have established that C and D are either both 
sane or both insane. Suppose they are both sane . Then C's 
statement that he and D are not both doctors was true, which 
means that at least one is a patient, hence a sane patient. If C 
and D are both insane, then C's statement was false, which 
means they are both doctors, hence both insane doctors . 
Therefore, this asylum contains at least one sane patient, or 
else at least two insane doctors . 

10, 1 1 ,  12 • First read problems 1 1  and 12, because the eas
iest way to solve Problem 10 is to start with Problem 12.  

Before we begin, let me point out a useful principle : Sup
pose we have two statements, X and Y, which are known to 
be either both true or both false . Then any inhabitant of the 
asylum, if he believes one of the statements, must also believe 
the other. Reason: If the statements are both true, then any 
inhabitant who believes one of them must be sane, hence 
must also believe the other, which is also true. If the state
ments are both false, then any inhabitant who believes one of 
them must be insane, and must also believe the other, since it 
is also false. 

Now let us solve Problem 12: Take any two committees, 
Committee 1 and Committee 2.  Let U be the group of all in
habitants whose worst enemy belongs to Committee 1, and 
let V be the group of all inhabitants whose best friend be
longs to Committee 2. According to Fact 4, both U and V are 
committees. Therefore, according to Fact 5, there is some in
habitant---call him Dan-whose best friend---call him Ed
ward-believes Dan is on U, and whose worst enemy---call 
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him Fred-believes Dan is on V. Thus, Edward believes Dan 
is on Committee V and Fred believes Dan is on Committee 
V. Now, by the definition of V, to say that Dan is on V is to 
say that his worst enemy, Fred, is on Committee 1 ;  in other 
words, the two statements "Dan is on U" and "Fred is on 
Committee 1" are either both true or both false. Since Ed
ward believes the one-namely, that Dan is on V-then he 
must also believe the other-namely, that Fred is on Com
mittee 1 (recall our preliminary principle ! ) .  So Edward be
lieves Fred is on Committee 1 .  

Fred, on the other hand, believes that Dan i s  on Commit
tee V. Now, Dan is on V only if his friend Edward is on Com
mittee 2 (by the defintion of V) ; in other words, these two 
facts are either both true or both false.  Then, since Fred be
lieves Dan is on V, Fred must also believe that Edward is on 
Committee 2. 

Thus we have two inhabitants, Edward and Fred, with 
these beliefs : Edward that Fred is on Committee 1 ,  and Fred 
that Edward is on Committee 2. This solves Problem 12. 

To solve Problem 10, let us now take as Committee 1 the 
group of all patients and as Committee 2 the group of all 
doctors, which are committees according to Facts 1 and 2. 
According to the solution of Problem 12, there exist inhabi
tants-Edward and Fred-who believe the following: Ed
ward, that Fred is on Committee 1 of all patients; and Fred, 
that Edward is on Committee 2 of all doctors . In other words, 
Edward believes that Fred is a patient and Fred believes that 
Edward is a doctor. Then, according to Problem 1 (using the 
names Edward and Fred rather than /ones and Smith) ,  one of 
the two, Edward or Fred (we don't know which) , must be 
either an insane doctor or a sane patient. So something is def
initely wrong with this asylum. 

As for Problem 1 1 ,  suppose that the group of all sane in-
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habitants and the group of all insane inhabitants are both 
committees, Committees 1 and 2 respectively. Then, accord
ing to Problem 12, inhabitants Edward and Fred would be
lieve : (a) Edward, that Fred is sane-in other words, a mem
ber of Committee 1; (b) Fred, that Edward is insane-and 
thus a member of Committee 2. This is impossible, because if 
Edward is sane, his belief is correct, which means Fred is 
sane; hence Fred's belief is correct, which means Edward is 
insane. So if Edward is sane, he is also insane, which is im
possible. On the other hand, if Edward is insane, his belief 
about Fred is wrong, which means Fred is insane; hence 
Fred's belief about Edward is wrong, which means Edward is 
sane. So if Edward is insane, he is also sane, which again is 
impossible. Therefore, the assumption that the group of sane 
inhabitants and the group of insane inhabitants are both 
committees leads to a contradiction. Therefore, it cannot be 
that both these groups are committees. 

13 • What Craig realized, to his horror, was that in this asy
lum, all the doctors were insane and all the patients were 
sane ! He reasoned this out in the following manner: 

Even before his interviews with Doctor Tarr and Professor 
Fether, he knew that there was at least one sane inhabitant, 
A. Now let B be A's best friend. By Condition C, if A believes 
that B is special, then A's best friend believes that B is a pa
tient. Since A's best friend is B, then if A believes that B is 
special, B believes that B is a patient. In other words, if A be
lieves that B is special, then B is peculiar. Since A is sane, 
then A's believing that B is special is tantamount to B's ac
tually being special . Therefore, we have the following key 
fact: 

If B is special, then B is peculiar. 
Now, either B is peculiar or he isn't. If he is peculiar, then 
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he believes he is a patient, and therefore (see Problem 4) he 
must be either an insane doctor or a sane patient; either way, 
B shouldn't be in the asylum. But suppose B is not peculiar, 
what then? Well, if B is not peculiar, he is not special either, 
because, in accordance with the "key fact," B can only be 
special if he is also peculiar. So B is neither peculiar nor spe
cial. Since l1e is not special, then the two assumptions that all 
patients believe he is peculiar and that no doctor believes he 
is peculiar cannot both be true, which means that at least one 
of them is false. Suppose the first assumption is false. Then at 
least one patient, P, does not believe that B is peculiar. If P 
were insane, then he would believe that B is peculiar (since B 
isn't) ; therefore, P is sane. This means that P is a sane patient. 
If the second assumption is false, then at least one doctor, D, 
believes that B is peculiar. Then D must be insane (since B is 
not peculiar) ; so D is an insane doctor. 

To summarize : If B is peculiar, then he is either a sane pa
tient or an insane doctor. If B is not peculiar, then either 
some sane patient, P, doesn't believe that B is peculiar, or 
some insane doctor, D, does believe B is. Therefore, this asy
lum must contain either a sane patient or an insane doctor. 

As I said, Craig realized all this before his interviews with 
Doctor Tarr and Professor Fether. Now, Doctor Tarr believes 
that all the doctors are sane, and Professor Fether believes 
that all the patients are insane. They cannot both be right (as 
we have proved) ; hence at least one of them is insane. Also, 
Professor Fether believes that Doctor Tarr is sane. If Profes
sor Fether is sane, he has to be right, and Doctor Tan would 
also be sane, which we know is not true. Therefore, Professor 
Fether must be insane. Then his belief that Doctor Tarr is 
sane is wrong, so Doctor Tan is also insane. This proves that 
Doctor Tan and Professor Fether are both insane. 

Since Doctor Tarr is insane and believes that at least one 
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patient is insane, then in fact all the patients must be sane. 
Since Professor Fether is insane and believes that at least one 
doctor is sane, then in fact all the doctors are insane. This 
proves that all the patients are sane and all the doctors are 
insane. 

Remarks: This puzzle, of course, was suggested by Edgar 
Allan Poe's story "The System of Doctor Tarr and Professor 
Fether," in which the patients of a lunatic asylum managed 
to overcome all the doctors and staff, put them, tarred and 
feathered, in the patients' cells, and assumed their roles. 
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Inspector Craig 

Visits 

Transylvania 

A week after these last adventures, Craig was preparing to 
return to London when he suddenly received a wire from the 
Transylvanian government, urgently requesting him to come 
to Transylvania to help solve some baffling cases of vam
pirism. Now, as I explained in my previous book of logic 
puzzles, What Is the Name of This Book?, Transylvania is in
habited by both vampires and humans; the vampires always 
lie and the humans always tell the truth. However, haH the 
inhabitants, both human and vampire, are insane and totally 
deluded in their beliefs (just like the mad inhabitants of the 
asylum of Doctor Tarr and Professor Fether)-all true propo
sitions they believe false and all false propositions they be
lieve true. The other half of the inhabitants are completely 
sane and totally accurate in their judgments Uust like the sane 
inhabitants of the asylums in Chapter 3)-all true statements 
they know to be true and all false statements they know to be 
false. 

Of course, the logic of Transylvania is much more compli
cated than that of the lunatic asylums, because in the latter, 
the inhabitants are at least honest and make false statements 
only out of delusion, never out of malice. But when a Tran-
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sylvanian makes a false statement, it could be either out of 
delusion or out of malice. Sane humans and insane vampires 
both make only true statements; insane humans and sane 
vampires make only false statements. For example, if you ask 
a Transylvanian whether the earth is round (as opposed to 
flat) , a sane human knows the earth is round and will truth
fully say so. An insane human believes the earth is not round, 
and will then truthfully express his belief and say it is not 
round. A sane vampire knows the earth is round, but will 
then lie and say it isn't. But an insane vampire believes the 
earth is not round and then lies and says it is round. Thus an 
insane vampire responds the same way to any question as a 
sane human, and an insane human the same way as a sane 
vampire. 

It was fortunate that Craig was as wen versed in vam
pirism as in logic (the general range of Craig's interests and 
knowledge was quite remarkable altogether) . When he ar
rived in Transylvania, he was informed by the authorities (all 
of whom were sane humans) that there were ten cases V\;'ith 
which they needed help, and he was requested to take charge 
of the investigations. 

T H E  F I R S T  F I V E  C A S E S  

Each of these cases involved two inhabitants. In each case, it 
was already known that one of them was a vampire and the 
other was human, but it was not known which was which (or 
perhaps I should say, which was witch) . Nothing was known, 
except in Case 5, about the sanity of either. 
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1 • The C ase o f  L ucy and M inn a 

The first case involved two sisters named Lucy and Minna, 
and Craig had to determine which one of tQem was a vam
pire. As indicated above, nothing was known about the sanity 
of either. Here is the transcript of the investigation: 

Craig (to Lucy) : Tell me something about yourselves. 
Lucy: We are both insane. 
Craig (to Minna) : Is that true? 
Minna: Of course not! 
From this, Craig was able to prove to everyone's satisfac

tion which of the sisters was the vampire. Which one was it? 

2 • Ca se o f  the L ugos i Bro ther s 

The next case was that of the Lugosi brothers. Both had the 
first name of Bela. Again, one was a vampire and one was not. 
They made the following statements: 

Bela the Elder: I am human. 
Bela the Younger: I am human. 
Bela the Elder: My brother is sane. 
Which one is the vampire? 

3 • The C ase o f  M ichael and Pe ter Karloff 

The next case involved another pair of brothers, Michael and 
Peter Karloff. Here is what they said: 

Michael Karloff: I am a vampire . 
Peter Karloff: I am human. 
Michael Karloff: My brother and I are alike as far as our 

sanity goes. 
Which one is the vampire? 
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4 .. The C ase o f  the T urgen ie fs 

The next case involved a father and son whose surname was 
Turgenief. Here is the transcript of the interrogation: 

Craig (to the father) : Are you both sane or both insane, or 
are you different in this respect? 

Father: At least one of us is insane. 
Son: That is quite true! 
Father: I, of course, am not a vampire . 
Which one is the vampire? 

5 .. The C ase of K arl and M ar th a  Dr acul a  

The last case of this group involved a pair of twins, Karl and 
Martha Dracula (no relation to the count, I can assure you!) .  
The interesting thing about this case is that not only was it al
ready known that one of them was human and the other a 
vampire, but it was also known that one of the two was sane 
and the other insane, although Craig had no idea which was 
which. Here is what they said: 

Karl: My sister is a vampire. 
Martha: My brother is insane! 
Which one is the vampire? 

F I V E  M A R R I E D  C O U P L E S 

The next five cases each involved a married couple . Now (as 
you may or may not know) , in Transylvania it is illegal for 
humans and vampires to intermarry, hence any married cou
ple there are either both humans or both vampires. In these 
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cases, as in Problems 1 through 4, nothing was known about 
the sanity of either person. 

6 • The C ase o f  Syl van and Syl vi a N i tr ate 

The first case in this group was that of Sylvan and Sylvia Ni
trate. As already explained, they are either both humans or 
both vampires. Here is the transcript of Craig's interrogation: 

Craig (to Mrs. Nitrate) : Tell me something about your-
selves. 

Sylvia: My husband is human. 
Sylvan: My wife is a vampire . 
Sylvia: One of us is sane and one of us is not. 
Are they humans or vampires? 

7 • The C ase o f  George and Glor i a  Glob ule 

The next case involved the Globules. 
Craig: Tell me something about yourselves . 
Gloria: Whatever my husband says is true. 
George: My wife is insane. 
Craig did not feel that the husband's remark was overly 

gallant; nevertheless, these two testimonies were sufficient to 
solve the case. 

Is this a human or a vampire couple? 

8 • The C ase of Bori s and Doro thy V ampyre 

"It is important," said the Transylvanian chief of police to 
Inspector Craig, "not to let the last name of the suspects prej
udice the issue."  
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Here are the answers they gave: 
Boris Vampyre: We are both vampires. 
Dorothy Vampyre: Yes, we are. 
Boris Vampyre: We are alike, as far as our sanity goes. 
What kind of couple are we dealing with? 

9 • The Case of Ar thur and Lillian Swee t 

The next case involved a foreign couple (foreign to Transyl
vania, that is) named Arthur and Lillian Sweet. Here is their 
testimony: 

Arthur: We are both insane. 
Lillian: That is true. 
What are Arthur and Lillian? 

10 • The Case of Luigi and Manuella Byrd cliHe 

Here is the testimony of the Byrdcliffes: 
Luigi: At least one of us is insane. 
Manuella: That is not true! 
Luigi: We are both human. 
What are Luigi and Manuella? 

T W O  U N E X P E C T E D  P U Z Z L E S 

1 1  • The Case o f  A and B 

Inspector Craig was relieved that all these unpleasant cases 
were over and was packing his things for his return to Lon-
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don, when quite unexpectedly a Transylvanian official burst 
into his room, begging him to stay just one more day to help 
solve a new case that had just come up. Well, Craig certainly 
did not relish the idea; still, he felt it his duty to assist where 
possible, and he consented. 

It appeared that two suspicious-looking characters had just 
been picked up by the Transylvanian police. They both hap
pened to be prominent persons, and Craig has requested that 
their names and sexes be withheld, so I shall just call them A 
and B. In contrast to the previous ten trials, nothing was 
known in advance concerning any relationship between 
them; they might both be vampires or both be human, or one 
could be a vampire and the other human. Also, they could be 
both sane or both insane, or one could be sane and the other 
insane. 

At the trial, A stated that B was sane, and B claimed that A 
was insane. Then A claimed that B was a vampire, and B de
clared that A was human. 

What can be deduced about A and B? 

12 • Two Tr an sylvani an Phi lo sopher s 

Happy that these weird trials were over at last, Craig was 
comfortably seated in a Transylvanian railroad station await
ing the train that would take him out of the country. He so 
looked forward to being back in London! Just then he over
heard a dispute between two Transylvanian philosophers, 
who were eagerly discussing the following problem: 

Suppose there is a pair of identical Transylvanian twins, 
one of whom is known to be a sane human and the other an 
insane vampire. And suppose you meet one of them alone 
and wish to find out which one he is. Can any amount of 
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yes/no questions suffice to do this? The first philosopher 
maintained that no number of questions could possibly ac
complish this, since either one would give the same answer as 
the other to any question asked. That is, given any question, 
if its correct answer is yes, the sane human will know the an
swer is yes and will truthfully answer yes; whereas the insane 
vampire will believe the answer is no and then lie and say 
yes . Similarly, if the correct answer to the question is no, then 
the sane human will answer no and the insane vampire, 
thinking the answer is yes, will lie and also say no. Therefore, 
the two brothers are indistinguishable in their outward 
verbal behavior, even though their minds work entirely dif-

f ferently. So, the first philosopher argued, no questions could 
tell them apart-unless, perhaps, given with a lie detector. 

The second philosopher disagreed. Actually, he did not 
present any arguments to support his position; all he said 
was, "Let me interrogate one of those two brothers, and I 'll 
tell you which one he is! " 

Craig was curious to hear the outcome of the dispute, but 
just then his train pulled in and the philosophers did not 
board it. 

Inspector Craig sat in his carriage for some time pondering 
as to which philosopher was right. He eventually realized 
that it was the second philosopher: if you met one of the 
twins, you could indeed find out by yes/no questions which 
of them you were addressing, and no lie detector was neces
sary. This then leaves two problems: 

(1) What is the smallest number of questions you need to 
ask? 

(2) More interesting yet, just what is wrong with the first 
philosopher's argument? 
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.. S O L U T I O N S . 

There is a principle that will apply in several of the solutions 
that follow and which we will establish in advance-namely, 
that if a Transylvanian says he is human, then he must be 
sane, and if he says he is a vampire, then he must be insane. 
The reason is this : Suppose he says he is human. Now, his 
statement is either true or false. If his statement is true, then 
he really is human, but the only humans who make true state
ments are sane humans so in this case he is sane. If, on the 
other hand, his statement is false, then he is really a vampire, 
but the only vampires who make false statements are sane 
vampires (insane vampires make true statements, just like 
sane humans) , so again he is sane. This proves that when a 
Transylvanian claims to be human, he must be sane, regard
less of whether he is really human or not. 

Suppose a Transylvanian claims to be a vampire; what fol
lows? Well, if his claim is true, then he really is a vampire, 
but the only vampires who make true claims are insane vam
pires. If his claim is false, then he is in fact human, but the 
only humans who make false claims are insane humans; so in 
this case he is also insane. Thus, any Transylvanian who 
claims to be a vampire is insane. 

We trust that the reader can verify for himself the fact that 
any Transylvanian who claims to be sane must in fact be 
human, and any Transylvanian who claims to be insane must 
in fact be a vampire. 

Now let us turn to the solutions of the problems. 

1 .. Lucy's statement is either true or false . If it is true, then 
both sisters are really insane; hence Lucy is insane, and the 
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only insane Transylvanian who can make a true statement is 
an insane vampire. So, if Lucy's statement is true, then Lucy 
is a vampire. 

Suppose Lucy's statement is false. Then at least one of the 
sisters is sane. If Lucy is sane, then, since she has made a false 
statement, she must be a vampire (because sane humans 
make only true statements) . Suppose Lucy is insane. Then it 
must be Minna who is sane. Also, Minna, by contradicting 
Lucy's false statement, has made a true statement. Therefore, 
Minna is sane and has made a true statement; so Minna is 
human, and again Lucy must be the vampire. 

This proves that regardless of whether Lucy's statement is 
true or false, Lucy is the vampire. 

2 • We have already established the principle that any 
Transylvanian who says he is human must be sane and any 
Transylvanian who says he is a vampire must be insane (see 
discussion prefacing the solutions) . Now, both the Lugosi 
brothers claim to be human; therefore, they are both sane. 
Therefore, Bela the Elder makes a true statement when he 
says that his brother is sane. So Bela the Elder is both sane 
and makes true statements; hence he is human. Therefore, it 
is Bela the Younger who is the vampire. 

3 • Since Michael claims to be a vampire, he is insane, and 
since Peter claims to be human, he is sane. So Michael is in
sane and Peter is sane; thus the two brothers are not alike as 
far as their sanity goes. Therefore, Michael's second state
ment is false, and since Michael is insane, he must be human 
(insane vampires don't make false statements ! ) .  Therefore, 
Peter is the vampire. 

4 • Father and son agree in answering the question about 
their sanity. This means that they either both make true 
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statements o r  both make false statements. But, since only one 
of them is human and the other is a vampire, they must nec
essarily be different as regards their sanity: If they are both 
sane, the one who is human would make true statements and 
the vampire would make false statements, and they could 
never agree ; if they are both insane, the human would make 
false statements and the vampire would make true state
ments, and again they could not agree. Therefore, it is really 
true that at least one of them is insane. This proves that both 
of them make true statements. Then, since the father says he 
is not a vampire, he really isn't. So it is the son who is the 
vampire. 

5 • Suppose Martha is the vampire. Then Karl is human, and 
also Karl has made a true statement; hence Karl in this case 
has to be a sane human. This would make Martha an insane 
vampire, since, as we have been told, Karl and Martha are 
different as regards their sanity. But then Martha, an insane 
vampire, would have made a false statement-that Karl is 
insane-which insane vampires cannot do. Therefore, the as
sumption that Martha is a vampire leads to a contradiction. 
So it is Karl who is the vampire. 

We can also determine their sanity or lack of it: Karl has 
made a false statement; hence, being a vampire, he is sane. 
But then Martha has also made a false statement; hence, 
being human, she is insane. So the complete answer is that 
Karl is a sane vampire and Martha is an insane human; Karl is 
lying when he says that his sister is a vampire, and Martha is 
deluded when she says that her brother is insane. (Quite a 
pair, even for Transylvania!) 

6 • Now we are in the situation where either both are vam
pires or both are human. Therefore, the first two statements 
cannot both be right, nor can they both be wrong (for if they 
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are both wrong, Sylvan would be a vampire and Sylvia would 
be human) . So one of the two statements is right and one is 
wrong. This means that one of the two people is sane and the 
other insane (because if .they were both sane, their statements 
would both be right if they were human, and both wrong if 
they were vampires) . Therefore, Sylvia is right when she says 
that one of the two is sane and the other insane. This means 
that Sylvia makes true statements. Therefore her statement 
that her husband is human is true. This means that they are 
both human (and, incidentally, SylVia is sane and Sylvan in
sane) . 

7 • Gloria, in saying that whatever her husband says is true, 
is assenting to his claim that she is insane; in other words, 
Gloria is indirectly claiming to be insane. Only vampires can 
make such a claim (as we proved in the discussion preceding 
the solutions) ; hence Gloria must be a vampire. Therefore, 
they are both vampires. 

8 • Suppose < they are human. Then their statements that 
they are both vampires are false, which means they are in
sane humans. That would mean that they are alike as far as 
their sanity goes; hence Boris's second statement is true, 
which is not possible for an insane human. Therefore, they 
cannot be human; they are vampires (and insane ones) . 

9 • Suppose they are human. A sane human couldn't possi
bly say that he/she and someone else are both insane hence 
they would both have to be insane humans. Then you would 
have insane humans making the true statement that they are 
both insane, which is not possible. Therefore, they cannot be 
human; they are vampires. (They could be either sane vam
pires who lie when they say that they are insane, or insane 
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vampires making the true statement that they are insane. Re
member that insane vampires always make true statements, 
although they don't intend to! ) .  

10 • Luigi and Manuella contradict each other; one of  them 
must be right and the other wrong. Therefore, one of them 
makes true statements and the other makes false statements. 
Since they are either both human or both vampires, then it 
must be true that at least one of them is insane, because if 
they are both sane, then they would either both make true 
statements if they were human or both make false statements 
if they were vampires. So Luigi is right when he says that at 
least one of the two is insane. Therefore, Luigi makes true 
statements, and when he says that they are both human, he is 
right about that, too. This proves that they are both human 
(and, incidentally, that Luigi is sane and Manuella insane) . 

1 1  • Let us call a Transylvanian reliable if he makes correct 
statements and unreliable if he makes incorrect ones. Reli
able Transylvanians are either sane humans or insane vam
pires; unreliable Transylvanians are either insane humans or 
sane vampires .  Now, A claims that B is sane, and also that B is 
a vampire. A's two claims are either both true or both false. If 
they are both true, then B is a sane vampire, which means 
that B is unreliable. On the other hand, if A's claims are both 
false, then B must be an insane human, which again means 
that B is unreliable .  So in either case (whether A's claims are 
both true or both false) , B is unreliable .  Hence B's claims 
are both false and A is neither insane nor human; therefore, A 
must be a sane vampire. This also means that A is unreliable ;  
so A's claims are both false, which means that B must be an 
insane human. So the answer is that A is a sane vampire and 
B is an insane human. 
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Incidentally, this problem is only one out of sixteen of a 
similar nature that could be devised and that all have unique 
solutions. The combination of whatever two statements A 
makes about B (one about his sanity and one about his human 
or vampire nature) with any two statements of B about A 
(one about A's sanity and the other about his nature)-and 
there are sixteen possibilities for these four statements-will 
uniquely determine the precise character of both A and B.  
For example, if  A says B is  human and B is  sane, and B says A 
is a vampire and A is insane, the solution will be that B is a 
sane human and A is an insane vampire. Again, suppose A 
says B is sane and B is a vampire, and B says A is insane and A 
is a vampire. What are A and B? Answer: A is a sane human 
and B is a sane vampire. 

Have you seen how to solve each of these sixteen possible 
problems and why each one must have a unique solution? If 
not, look at it this way: A can make four possible pairs of 
statements about B-namely, (1) B is sane; B is human. (2) B 
is sane; B is a vampire. (3) B is insane; B is human. (4) B is in
sane; B is a vampire. In each of the four cases, we can deter
mine whether or not B is reliable. In Case 1, B must be reli
able regardless of whether A's statements are both true or 
both false-because if both are true, B is a sane human and 
hence reliable; if both are false, B is an insane vampire, hence 
again reliable. Likewise in Case 4, B must be reliable. In 
Cases 2 and 3, on the other hand, B must necessarily be unre
liable. So from A's statements we can always determine the 
reliability of B. In a similar manner, from B's two statements 
we can determine the reliability of A. Then, when we know 
the respective reliabilities of A and B, we know which of all 
four statements are true and which are false, and the problem 
is then solved. 

I might also remark that if, instead of A and B each making 
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two statements about the other, each made a conjunction of 
them, the problem would be unsolvable. If, for example, in
stead of making two separate statements--"Bis sane," "B is a 
vampire"-A said, "B is a sane vampire," we could deduce 
nothing about the reliability of B; this is because if A's state
ment is correct, B is a sane vampire, but if A's statement is 
incorrect, B could be either an insane vampire or a sane 
human or an insane human. 

12 • One question is enough! All you need ask him is, "Are 
you human?" ("Are you sane?" would also work, and "Are 
you a sane human?" as well. )  So suppose you ask him, "Are 
you human?" Wen, if the one you are addressing is the sane 
human, he of course will answer yes. But suppose you are ad
dressing the insane vampire. Being insane, he will erro
neously believe he is human and then, being a vampire, will 
lie and say no. So the sane human will answer yes and the in
sane vampire will answer no. Therefore, if you get yes for an 
answer, you will know that he is the sane human, and if you 
get no for an answer, you will know that he is the insane 
vampire. 

Now, more interesting yet, what was wrong with the first 
philosopher's argument? The first philosopher was certainly 
right in that if you ask the two brothers the same question, 
you will get the same answer. What the philosopher didn't 
realize was that if you ask, "Are you human?" to each of 
the two brothers, you are not actually 'asking the same ques
tion but rather two different questions, because the question 
contains the variable word you, whose meaning depends on 
the person to whom the question is addressed! So, even 
though you utter the same words when you put the question 
to two different people, you are really asking a different 
question in each case. 

To look at it another way: Suppose the names of the two 
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brothers are known-John, say, is the name of the sane 
human, and Jim the name of the insane vampire. If '1 ask 
either brother, "Is John human?" both brothers will reply yes 
because I am now putting the same question to each; simi
larly, if I ask, "Is Jim human?" both brothers will answer no. 
But if I ask each brother, "Are you human?" I am really ask
ing a different question in each case. 
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The Island of 

Questioners 

Somewhere in the vast reaches of the ocean, there is a very 
strange island known as the Island of Questioners. It derives 
its name from the fact that its inhabitants never make state
ments; they only ask questions. Then how do they manage to 
communicate? More on that later. 

The inhabitants ask only questions answerable by yes or 
no. Each inhabitant is one of two types, A and B. Those of 
type A ask only questions whose correct answer is yes; those 
of type B ask only questions whose correct answer is no. For 
example, an inhabitant of type A could ask, "Does two plus 
two equal four?" But he could not ask whether two plus two 
equals five. An inhabitant of type B could not ask whether 
two plus two equals four, but he could ask whether two plus 
two equals five, or whether two plus two equals six. 

Suppose you meet a native of this island, and he asks you, 
"Am I of type B?" What would you conclude? 
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2 

Suppose, instead, he had asked you whether he is of type A. 
What would you have concluded? 

3 

I once visited this island and met a couple named Ethan and 
Violet Russell . I heard Ethan ask someone, "Are Violet and I 
both of type B?" 

What type is Violet? 

4 

Another time I met two brothers whose first names were 
Arthur and Robert. Arthur once asked Robert, "Is at least one 
of us of type B?" 

What types are Arthur and Robert? 

5 

Next I met a couple whose last name was Gordon. Mr. Gor
don asked his wife, "Darling, are we of different types?" 

What can be deduced about each? 

6 

Then I met a native whose last name was Zorn. He asked me, 
"Am I the type who could ask whether I am of type B?" 
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Can anything be deduced about Zorn, or is this story im
possible? 

7 

Going from the sublime to the ridiculous, I came across a na
tive who asked, "Am I the type who could ask the question I 
am now asking?" 

Can anything be deduced about him? 

8 

I next came across a couple whose last name was Klink. Mrs. 
Klink asked her husband, "Are you the type who could ask 
me whether I am of type A?" 

What can be deduced about Mr. and Mrs. Klink? 

9 

Then I met a couple named John and Betty Black. Betty 
asked John, "Are you the type who could ask whether at least 
one of us is of type B?" 

What are John and Betty? 

Remarks: The last two puzzles remind me of the title of a 
song I heard many years ago. It was part of a collection of 
songs all of which were sort of "spoofs" on psychoanalysis. 
This particular one was titled: "I can't get adjusted to the you 
who's gotten adjusted to me."  
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10 

The next incident was really a logical tangle!  I met three sis
ters named Alice, Betty, and Cynthia. Alice asked Betty, 
"Are you the type who could ask Cynthia whether she is the 
type who could ask you whether you two are of different 
types?" 

As I walked away, I tried to puzzle this out and finally real
ized that it was possible to deduce the type of only one of the 
three girls. Which one, and which type is she? 

A S T R A N G E  E N C O U N T E R  

The next three exchanges I witnessed on the Island of Ques
tioners were the most bizarre of all ! Three patients from one 
of the insane asylums of Chapter 3 escaped and decided to 
pay a visit to the island. We recall that a patient from one of 
these asylums could be sane or insane and that the sane ones 
are totally accurate in all their beliefs, and the insane ones 
totally inaccurate in all their beliefs. We also recall that the 
patients, whether sane or insane, are always truthful; they 
never make statements unless they believe them to be true. 

11 

On the day . after their arrival, one of the patients, whose 
name was Arnold, met a native of the island. The native 
asked him, "Do you believe I am of type B?" 

What can be deduced about the native, and what can be 
deduced about Arnold? 
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12 

The next day, another of the three patients, Thomas, had a 
long conversation with one of the natives (if you can call it a 
conversation-Thomas kept making statements and the na
tive kept asking questions! ) .  At one point the native asked 
Thomas, "Do you believe I am the type who could ask you 
whether you are insane?" 

What can be deduced about the native, and what can be 
deduced about Thomas? 

Several days later, I had a conversation with the third pa
tient, whose name was William. William told me that on the 
preceding day he had overheard a conversation between 
Thomas and a native named Hal, in which Thomas said to 
Hal, "You are the type who could ask whether I believe you 
are of type B ."  

Can anything be deduced about either Thomas, Hal, or 
William? 

W H O  I S  T H E  S O R C E R E R ?  

At this point in my adventures, I still did not know whether 
Thomas was sane or insane, nor did I have much time to find 
out. The next day all three patients left the island. The last I 
heard, they had voluntarily returned to the asylum from 
which they escaped. They were evidently happy there, since 
they agreed unanimously that life outside the asylum was 
even crazier than life inside. 
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Well, it was a relief to have things back to normal on the 
Island of Questioners . Then I heard a rumor that interested 
me very much-namely, that there might be a sorcerer on 
this island. Now, sorcerers have fascinated me since child
hood, so I was very anxious to meet a real one, if the rumor 
was true. I wondered how I could find out! 

Fortunately, a native asked me a question one day, and then I 
knew that there must be a sorcerer on the island. 

Can you supply such a question? 
At this point, the reader might well be wondering how I 

could possibly have heard a rumor about a sorcerer on the is
land or, for that matter, heard anything at all about the is
land, since the inhabitants never make statements but only 
ask questions. Assuming that the reader hasn't already fig
ured out the answer for himself, the solution to this problem 
will show exactly how the inhabitants can communicate in
formation just as freely (if somewhat more clumsily) as any
one else . 

As you can imagine, I was delighted to find out that there 
really was a sorcerer on the island. I also learned that he was 
the island's only sorcerer. But I had no idea who he was. 
Then I discovered that a grand prize had been offered to any 
visitor who could correctly guess his name. The only draw
back was that any visitor who guessed wrong would be exe
cuted. 

So I got up early the next morning and walked around the 
island, hoping that the natives would ask me enough ques-
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hons to  enable me to  deduce with certainty who the sorcerer 
was. Here is what happened: 

The first native I met was named Arthur Good. He asked me, 
"Am I the sorcerer?" 

Did I have enough information yet to know who the sor
cerer was? 

16 

The next native was named Bernard Green. He asked me, 
"Am I the type who could ask whether I am not the sor
cerer?" 

Did I yet have enough information? 

17 

The next native, Charles Mansfield, asked, "Am I the type 
who could ask whether the sorcerer is the type who could ask 
whether I am the sorcerer?" 

Do I yet have enough information? 

The next native was named Daniel Mott. He asked, "Is the 
sorcerer of type B?" 

Do I yet have enough information? 
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The next native was named Edwin Drood. He asked, "Are 
the sorcerer and I of the same type?" 

Eureka! I now had enough pieces to solve the mystery! 
Who is the sorcerer? 

<> <> <> 

Bonus Pro blem 

Are you a good detective? We recall the patient Thomas who 
visited this island. Is he really sane or insane? 

• S O L U T I O N S . 

1 • It is impossible for any native of this island to ask you 
this question. If a native of type A asks, "Am I of type B?," 
the correct answer is no (since he isn't of type B), but a type 
A cannot ask any question whose correct answer is no. 
Therefore, no native of type A can ask this question. If a na
tive of type B asks the question, the correct answer is yes 
(since he is of type B) , but a type B cannot ask a question 
whose correct answer is yes. Therefore, a native of type B 
cannot ask the question either. 

2 • Nothing can be concluded. Any native of this island can 
ask whether he is of type A, because he is of either type A or 
type B. If he is of type A, then the correct answer to the 
question, "Am I of type A?" is yes, and anyone of type A can 
ask any question whose correct answer is yes. On the other 
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hand, if the inhabitant is of type B, then the correct answer to 
the question is no, and any inhabitant of type B can ask a 
question whose correct answer is no . 

3 • We must first find out Ethan's type. Suppose Ethan is of 
type A. Then the correct answer to his question must be yes 
(since yes is the correct answer to questions asked by those of 
type A) , which would mean that Ethan and Violet are both of 
type B, which would mean that Ethan is of type B, and we 
have a contradiction. Therefore, Ethan can't be of type A; he 
must be of type B. Since he is of type B, the correct answer to 
his question is no, so it is not the case that he and Violet are 
both of type B. This means Violet must be of type A. 

4 • Suppose Arthur were of type B.  Then it would be true 
that at least one of the brothers was of type B, which would 
make yes the correct answer to his question, which would 
mean he is of type A. This is a contradiction; hence Arthur 
cannot be of type B; he must be of type A. From this it fol
lows that the correct answer to his question is yes, which 
means that at least one of the two is of type B. Since Arthur is 
not of type B, this must be Robert. So Arthur is of type A and 
Robert is of type B. 

5 • Nothing can be deduced about Mr. Gordon, but Mrs. 
Gordon must be of type B. Here are the reasons why: 

Mr. Gordon is of either type A or type B. Suppose he is of 
type A. Then the correct answer to his question is yes, which 
means the two are of different types. This means Mrs. Gordon 
must be of type B (since he is of type A and the two are of 
different types) . So, if Mr. Gordon is of type A, then Mrs. 
Gordon must be of type B. 

Now, suppose Mr. Gordon is of type B.  Then the correct 
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answer to his question is no, which means the two are not of 
different types; they are of the same type. This means that 
Mrs. Gordon is also of type B. So if Mr. Gordon is of type B, 

so is Mrs. Gordon. 

This proves that regardless of whether Mr. Gordon is of 

type A or type B, Mrs. Gordon must be of type B.  
Another proof-much simpler but more sophisticated-is 

this : We already know from the first problem that no one on 

this island can ask whether he is of type B .  Now, if Mrs. Gor

don were of type A, then for an inhabitant to ask whether he 

is of a different type from Mrs. Gordon would be equivalent 
to his asking whether he is of type B, which he cannot do. 
Therefore, Mrs. Gordon cannot be of type A. 

6 • This story is perfectly possible, but Zorn must be of type 
B .  The easiest way to see this is by recalling (Problem 1) that 
no native of this island can ask whether he is of type B. So 
when Zorn asks whether he is the type who could ask 
whether he is of type B, the correct answer is no (since no in
habitant could ask whether he is of type B) . Since the correct 
answer is no, Zorn must be of type B .  

7 • Since the native just did ask the question, then he ob
viously could ask the question. Hence the correct answer to 
his question is yes, and he is of type A. 

8 • Nothing can be deduced about Mrs. Klink, but Mr. Klink 
must be of type A. Here are the reasons: Suppose Mrs. Klink 
is of type A. Then the correct answer to her question is yes, 
which means that Mr. Klink could ask Mrs. Klink if she is of 
type A. And, since Mrs. Klink is of type A, the correct answer 
would be yes, which makes Mr. Klink of type A. So, if Mrs. 
Klink is of type A, so is her husband. Now, suppose Mrs .  
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Klink is of type B. Then the correct answer to her question is 

no, which means that Mr. Klink is not the type who could ask 
her if she is of type A. Thus he could not ask a question whose 
correct answer is no, so he must be of type A. So, Mr. Klink is 

of type A, regardless of the type of Mrs. Klink. 

9 • Suppose Betty is of type A. Then the correct answer to 
her question is yes ; hence John could ask if at least one of 
them is of type B. But this leads to a contradiction: If John is 
of type A, then it would be false that at least one of them is of 
type B. Hence the correct answer to his question would be 
no, which is not possible for one of type A. If John is of type 

B, then it would be true that at least one of them is of type B, 
which makes yes the correct answer to his question. But one 
of type B cannot ask a question whose correct answer is yes . 
Thus the assumption that Betty is of type A is impossible ; she 
must be of type B.  

Since Betty is  of type B, then the correct answer to her 
question is no, which means that John cannot ask her if at 
least one of them is of type B. Now, if John were of type A, 
then he could ask that question, because it is true that at least 
one of them is of type B (namely, Betty) . Since he can't ask 
that question, he must also be of type B.  

So the answer is  that both of them are of type B .  

10  • It  i s  easiest to  build the solution of  this problem in 
graded steps. First, we can easily establish the following two 
propositions: 

Proposition �: Given any inhabitant X of type A, no inhabi
tant could ask whether (s)he and X are of different types. 

Proposition 2:  Given any inhabitant X of type B, then any 
inhabitant could ask whether (s)he and X are of different 
types. 
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We have already proved Proposition 1 in the solution of 
Problem 5, in which we saw that if Mrs. Gordon had been of 
type A, then Mr. Gordon couldn 't have asked whether he and 
Mrs. Gordon were of the same type. 

As for Proposition 2,  if X is of type B, then the question of 
whether one is of a different type than X is equivalent to the 
question of whether one is of type A, and anyone can ask that 
question, as we saw in the solution of Problem 2. Therefore, 
anyone can ask X whether (s)he is of a different type, if X is of 
type B.  

Now for the problem: I will prove that the correct answer 
to Alice's question is no; hence Alice must be of type B. In 
other words, I will prove that it is not possible for Betty to 
ask Cynthia whether Cynthia is the type who could ask Betty 
whether Cynthia and Betty are of different types. 

Suppose Betty asks Cynthia whether Cynthia could ask 
whether Cynthia and Betty were of different types. We get 
the following contradiction: Betty is either of type A or type 
B. Suppose Betty is of type A. Then by Proposition 1 ,  
Cynthia could not ask whether she and Betty are of different 
types; hence the answer to Betty's question is no, which is 
impossible since Betty is of type Al On the other hand, sup
pose Betty is of type B. Then by Proposition 2, Cynthia could 
ask whether she and Betty are of different types, which 
makes yes the correct answer to Betty's question, which is 
not possible since Betty is of type B .  

This proves that Betty could never ask Cynthia the ques
tion which Alice asks Betty whether she could ask, so the 

correct answer to Alice's question is no, and Alice is of type 

B .  As to the types of Betty and Cynthia, nothing can be de

termined. 

1 1  • This strikes me as the funniest problem of this chapter, 
since nothing can be deduced about the native who asked the 
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question; but as to Arnold, though he never opened his 

mouth (as far as we know), he must be insane I The fact is that 
no native could ask a sane person whether he believes the 

native to be of type B, because asking a sane person whether 

he believes such-and-such to be the case is tantamount to 

asking whether such-and-such really is the case, and no na

tive can ask whether he is of type B. So no native X could ask 
a sane person whether he believes X is of type B .  

On the other hand (and we need this fact for a subsequent 

problem), any native X could ask an insane person whether 

he believes X is of type B, because asking that of an insane 
person is tantamount to X asking whether X is of type A, 
which, as we have seen, any native X can do. 

12 • Nothing can be deduced about Thomas, but the native 
who asked the question must be of type B. For, suppose he 
were of type A, then the correct answer to his question is yes, 
which means that Thomas does believe that the native could 
ask him whether he is insane. Now, Thomas is either sane or 
insane. Suppose he is sane. Then his belief is correct, which 
means that the native could ask him if he is insane. But one of 
type A can ask a question only if the correct answer is yes, 
which would mean that Thomas must be insane; so the as
sumption that Thomas is sane leads to the conclusion that 
Thomas is insane. Therefore, it is contradictory to assume 
that Thomas is sane. On the other hand, suppose Thomas is 
insane. Then Thomas's belief that the native could ask if 
Thomas is insane is wrong; hence the native couldn't ask him 
if he is insane. (Thomas would answer no--impossible, given 
that the native is of type A.) But, given that Thomas is insane, 
and the native is of type A, then the native could, by the rules 
on the Island of Questioners, ask Thomas if he is insane (since 
the correct answer would be yes) . So it is also contradictory 
to assume that Thomas is insane. 
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The only way out of the contradiction is that the native 

must be of type B rather than type A, and no contradiction 
arises, regardless of whether Thomas is sane or insane. 

13 • I will show that the story which William reported 
could never really have happened; hence William must be 
insane to believe that it had. 

Suppose the story were true : we get the following contra
diction. Suppose Thomas is sane; then his statement is cor
rect, which means that Hal could ask Thomas if he believes 
that Hal is of type B. But by the solution to Problem 11 ,  this 
implies that Thomas is insane! So it is contradictory to as
sume that Thomas is sane. On the other hand, suppose 
Thomas is insane. Then his statement is false; hence Hal 
couldn't ask Thomas if he believes that Hal is of type B .  But, 
as we saw in Problem 11 ,  a native can ask an insane person 
whether he believes the native to be of type B; so we also get 
a contradiction in this case. 

The only way out of the contradiction is that Thomas 
never did ask such a question of any native, and William only 
imagined he did. 

14 • Many questions will do the trick; my favorite one is : 
"Am I the type who can ask whether there is a sorcerer on 
this island?" 

Suppose the questioner is of type A. Then the correct an
swer to his question is yes; the questioner can ask if there is a 
sorcerer on the island. Being of type A, he can ask whether 
there is a sorcerer on the island only if there is in fact a sor
cerer on the island (so the correct answer would be yes) . 
Thus, if the questioner is of type A, then there must be a sor
cerer on the island. 

Suppose the questioner is of type B. Then the correct an
swer to his question is no, which means that he cannot ask if 
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there is a sorcerer on the island. Now if there were no sor

cerer on the island, then the questioner (being of type B) 
could ask if there is a sorcerer on the island (since the correct 

answer would be no) . However, since the questioner can't ask 

this (as we have seen), it follows that there must in fact be a 

sorcerer on the island. This proves that if the questioner is of 
type B, there is a sorcerer on the island. So, regardless of 
whether the questioner is of type A or type B, there must be a 

sorcerer on the island. 

15 • Of course not! 

16 • All that can be deduced is that Bernard Green is not the 
sorcerer (by the same reasoning as in the solution of Problem 
14) · 

17 • All that can be deduced is that the sorcerer is the type 
who could ask if Charles Mansfield is the sorcerer. (Remem
ber that, as we found out in Problem 11 ,  when a native asks, 
"Am I the type who could ask such-and-such?" then the 
such-and-such must in fact be true.) 

18 .. All that can be deduced is that Daniel Mott is not the 
sorcerer (because the sorcerer cannot ask whether the sor
cerer is of type B; no one can ask whether he is of type B) . 

19 • It is not possible to deduce who the sorcerer is from 
what Edwin Drood asks by itself, but from Edwin Drood's 
question together with earlier questions, the problem be
comes completely resolved! 

What follows from Edwin Drood's question is that the sor
cerer must be of type A. For, suppose Edwin is of type A.  
Then the correct answer to his question is  yes; hence he and 
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the sorcerer really would be of the same type; so the sorcerer 
would also be of type A. On the other hand, suppose Edwin is 
of type B. Then the correct answer to his question is no, 

which means that he and the sorcerer would not }:>e of the 

same type. Since Edwin would be of type B, and the sorcerer 

would not be of the same type as Edwin, then again the sor
cerer must be of type A. 

This proves that the sorcerer is of type A. Now, we saw in 

Problem 17 that the �orcerer could ask if Charles Mansfield is 

the sorcerer. Since the sorcerer is of type A, then the correct 

answer to that question is yes; hence Charles Mansfield must 
be the sorcerer! 

Bonus Problem + I told you that Arnold, Thomas, and Wil
liam were unanimously agreed that life outside the asylum 
was even crazier than life inside. Since Thomas agrees with 
Arnold and William, who are insane, then Thomas must also 
be insane. 



The Isle of 

Dre ams 

I once dreamed that there was a certain island called the Isle 

of Dreams. The inhabitants of this island dream qujte vividly; 
indeed, their thoughts while asleep are as vivid as while 
awake. Moreover, their dream life has the same continuity 

from night to night as their waking life has from day to day. 
As a result, some of the inhabitants sometimes have difficulty 

in knowing whether they are awake or asleep at a given time. 
Now, it so happens that each inhabitant is of one of two 

types : diurnal or nocturnal. A diurnal inhabitant is character

ized by the fact that everything he believes while he is awake 

is true, and everything he believes while he is asleep is false. 

A nocturnal inhabitant is the opposite : everything a noctur

nal person believes while asleep is true, and everything he 
believes while awake is false. 

1 

At one particular time, one of the inhabitants believed that 
he was of the diurnal type. 

Can it be determined whether his belief was correct? Can 

it be determined whether he was awake or asleep at the 

time? 
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On another occasion, one of the natives believed he was 

asleep at the time. Can it be determined whether his belief 
was correct? Can it be determined what type he is? 

3 

(a) Is it true that an inhabitant's opinion of whether he is 

diurnal or nocturnal never changes? 
(b) Is it true that an inhabitant's opinion of whether he is 

awake or asleep at the time never changes? 

4 

At one time, an inhabitant believed that she was either asleep 

or of the nocturnal type, or both. (Or means at least one or 
possibly both. ) 

Can it be determined whether she was awake or asleep at 
the time? Can it be determined what type she is? 

5 

At one time, an inhabitant believed that he was both asleep 

and diurnal. What was he really? 

6 

There is a married couple on this island whose last name is 
Kulp. At one point Mr. Kulp believed that he and his wife 

were both nocturnal. At the same instant, Mrs. Kulp believed 
that they were not both nocturnal. As it happened, one of 

them was awake and one of them was asleep at the time. 

Which one of them was awake? 
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7 

There is another married couple on this isle whose last name 

is Byron. One of them is nocturnal and the other is diurnal. 

At one point the wife believed that they were either both 
asleep or both awake. At the same instant, the husband be

lieved that they were neither both asleep nor both awake. 
Which one was right? 

8 

Here is a particularly interesting case: at one time an inhabi

tant named Edward believed amazingly that he and his sister 

Elaine were both nocturnal, and at the same time that he was 

not nocturnal. 

How is this possible? Is he nocturnal or diurnal? What 
about his sister? Was he awake or asleep at the time? 

9 • The Royal Fa m ily 

This isle has a king and a queen and also a princess. At one 
point the princess believed that her parents were of different 
types. Twelve hours later, she changed her state (either from 

sleeping to waking or from waking to sleeping) , and she then 

believed that her father was diurnal and her mother was noc
turnal. 

What type is the king and what type is the queen? 

10 • And Wha t Abou t the W itch Do ctor? 

No island is complete without a sorcerer or magician, a medi
cine man or witch doctor, or something like that. Well, this 
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island, as it happens, has a witch doctor and only one witch 
doctor. Now comes a particularly intriguing puzzle concern
ing this witch doctor: 

At one time an inhabitant named Ork was wondering 

whether he himself was the witch doctor. He came to the 

conclusion that if he was diurnal and awake at that point, 
then he must be the witch doctor. At the same instant, an
other inhabitant named Bork believed that if he was either 

diurnal and awake or nocturnal and asleep, then he (Bork) 

was the witch doctor. As it happened, Ork and Bork were 

either both asleep or both awake at the time. 
Is the witch doctor diurnal or nocturnal? 

1 1  • A Me tapuzzle 

I once gave a friend the following puzzle about this island: 

"An inhabitant believed at one time that he was diurnal 

and awake. What was he really?" 

My friend thought about this for a while and then replied, 

"You obviously haven't given me enough information! "  Of 

course my friend was right! He then asked me, "Do you know 
what type he was and whether he was awake or asleep at the 

time?" 

"Oh, yes," I replied, "I happen to know this inhabitant 

well, and I know both his type and his state at the time."  

My friend then asked me a shrewd question: "If you were 
to tell me whether he was diurnal or nocturnal, would I then 

have enough information to know whether he was awake or 

asleep at the time?" I answered him truthfully (yes or no) , 

and he was then able to solve the puzzle . 
Was the inhabitant diurnal or nocturnal, and was he awake 

or asleep at the time? 

82 



THE I SLE OF D R EAM S 

12 • A More D iffi cul t  Me tap uzzle 

On another occasion, I told a friend the following puzzle 
concerning this island: 

"An inhabitant at one point believed that she was both 
asleep and nocturnal . What was she really?" 

My friend immediately realized that I had not given him 
enough information. 

"Suppose you told me whether the lady was nocturnal or 
diurnal," my friend asked me. "Would I then be able to de
duce whether she was asleep or awake at the time?" 

I answered him truthfully, but he was not able to solve the 
problem (he still hadn't enough information) . 

Some days later, I gave the same problem to another friend 
(without telling him about the first friend) . This second friend 
also realized that I hadJ;;t given him enough information. 
Then he asked me the following question: "Suppose you told 
me whether the lady was awake or asleep at the time; would 
I then have enough information to know whether she was 
diurnal or nocturnal?" 

I answered him truthfully, but he was unable to solve the 
problem (he too did not have enough information) . 

At this point, you have enough information to solve the 
puzzle ! Was the lady diurnal or nocturnal, and was she 
awake or asleep at the time? 

Ep ilog ue 

Suppose there really existed an island of the type described 
in this chapter, and suppose that I were one of the inhabi
tants. Would I be the diurnal or nocturnal type? It is really 
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possible to answer this on the basis of things I have said in 
this chapter! 

.. S O L U T I O N S ,. 

1, 2, 3 .. Let us first observe that the following laws must 
hold: 

Law 1: An inhabitant while awake believes he is diurnal. 
Law 2: An inhabitant while asleep believes he is nocturnal . 
Law 3: Diurnal inhabitants at aU times believe they are 

awake. 
Law 4:  Nocturnal inhabitants at all times believe they are 

asleep. 
To prove Law 1 :  Suppose X is an inhabitant who is awake 

at a given time. If X is diurnal, then he is both diurnal and 
awake; hence his beliefs at the time are correct; and he 
knows he is diurnal. On the other hand, suppose X is noctur
nal. Then, being nocturnal but awake at the time, his beliefs 
are wrong; hence he erroneously believes he is diurnal. In 
summary, if X is awake, then if he is diurnal, he (rightly) be
lieves he is diurnal, and if he is nocturnal, he (wrongly) be
lieves he is diurnal. 

The proof of Law 2 is parallel : If X is asleep, then if he is 
nocturnal, he (rightly) believes he is nocturnal, and if he is 
diurnal, he (wrongly) believes he is nocturnal. 

To prove Law 3, suppose X is diurnal. While awake, his 
beliefs are correct; hence he then knows he is awake. But 
while asleep, his beliefs are wrong; hence he then erro
neously believes he is awake. So, while awake he (rightly) be
lieves he is awake, and while asleep he (wrongly) believes he 
is awake. 
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The proof o f  Law 4 parallels the proof o f  Law 3 ,  and i s  left 

to the reader. 
Now, to solve Problem 1, it cannot be determined whether 

his belief was correct. But he must have been awake at the 

time, for had he been asleep, he would have believed himself 

nocturnal rather than diurnal (by Law 2) . 
As for Problem 2, again it cannot be determined if his be

lief was correct; but the native must have been nocturnal, for 

were he diurnal, he would have believed himself to be awake 

rather than asleep (by Law 3) . 
As for Problem 3, the answer to (a) is no (because by Laws 

1 and 2, an inhabitant's opinion as to whether he is diurnal or 
nocturnal changes from state to state; that is, from the wak

ing state to the sleeping state) , but the answer to (b) is yes (by 

Laws 3 and 4) · 

4 • You can solve this systematically by conSidering each of 
the four possibilities in tum: (1) she is nocturnal and asleep; 
(2) she is nocturnal and awake; (3) she is diurnal and asleep; 
(4) she is diurnal and awake. You can then see which of the 
possibilities is compatible with the given conditions. How
ever, I prefer the following argument: 

First of all, could her belief be incorrect? If it is, then she is 
neither asleep nor nocturnal, which means she is awake and 
diurnal. However, this is a contradiction, since a person who 
is awake and diurnal cannot have an incorrect belief. There
fore, her belief cannot be incorrect; it must be correct. This 
means that she is asleep and nocturnal. 

5 � Again, this could be solved by trying each of four an
swers in tum, but again I prefer a more creative solution. 

Could his belief have been correct? If so, then he was 
really asleep and diurnal, but being asleep and diurnal, he 
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couldn't have a correct belief. Therefore, his belief was 

wrong. Now, the only occasions on which an inhabitant can 
have a wrong belief is when he is either asleep and diurnal or 
awake and nocturnal. If he were asleep and diurnal, then his 

belief would have been correct (for that is what he believes) . 

Hence he must have been awake and nocturnal . 

6 • If you go about solving this puzzle systematically, you 
will have sixteen cases to consider! (Four possibilities for the 
husband, and with each of these four possibilities there are 
four possibilities for the wife. )  Fortunately, there is a much 
simpler method of approaching the problem. 

To begin with, since one of the two is asleep and the other 
awake, and since they believe opposite things, then they must 
be of the same type (that is, either both diurnal or both noc
turnal), because if they were of different types, their beliefs 
would be opposite when they were both asleep or both 
awake and would coincide when one was asleep and the 
other was awake. Since their beliefs when one is asleep and 
the other awake don't coincide, then they must be of the 
same type. 

Given, therefore, that they are either both nocturnal or 
both diurnal, let us suppose they are both nocturnal. Then 
the husband's belief at the time was correct, and since he is 
nocturnal, he must have been asleep at the time. Now, sup
pose they are both diurnal. Then the husband was obviously 
wrong in believing that they were both nocturnal, and since 
he is diurnal and had a wrong belief, then he must have been 
asleep at the time. So, whether they are nocturnal or diurnal, 
the husband must have been asleep at the time and his wife 
awake. 

7 • This is even simpler: Since the husband and wife are of 
different types, then their beliefs must be opposite when they 
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are in the same state (that is, both awake or both asleep) , and 
their beliefs must be the same when they are in different 
states (one asleep and the other awake) . Since on this occa

sion their beliefs were opposite, then they were in the same 

state-both asleep or both awake. Therefore, the wife was 
right. 

8 • Obviously, Edward must have been in an unreliable state 
of mind at the time to believe these two logically incompati
ble propositionsl So, both of Edward's beliefs must be wrong. 
Since he believed that he and Elaine were both nocturnal, 
then they are not both nocturnal. And since he believed he 
was not nocturnal, then he is nocturnal. So he is nocturnal, 
but they are not both nocturnal, so Elaine is diurnal. Since he 
is nocturnal and believed falsely at the time, he must have 
been awake. So, the answer is that he is nocturnal, his sister is 
diurnal, and he was awake. 

9 • Since the princess changed her state, then one of her. two 
beliefs was correct and the other incorrect. This means that 
of the following two propositions, one is true and the other is 
false: 

(1) The king and queen are of different types. 
(2) The king is diurnal and the queen is nocturnal. 
If (2) is true, then (1) would also have to be true, but we 

know that (2) and (1) can't both be true. Therefore, (2) must 
be false, and hence also (1) must be true. So the king and 
queen really are of different types, but it is not the case that 
the king is diurnal and the queen nocturnal. Therefore, the 
king is nocturnal and the queen is diurnal. 

10 • Suppose Ork were diurnal and awake at the time; 
would it follow from that supposition that Ork must be the 
witch doctor? Yes it would, by the following argument: Sup-

8? 
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pose Ork really were diurnal and awake at the time. Then his 
belief is correct, which means that if he is diurnal and awake, 

then he is the witch doctor. But he is diurnal an� awake (by 

supposition) ; hence he must be the witch doctor (still under 
the supposition, of course, that he is diurnal and awake) . So, 
the supposition that he is diurnal and awake leads to the con

clusion that he is the witch doctor. This, of course, does not 

prove that the supposition is true, nor that he is the witch 

doctor, but only that if he was diurnal and awake, then he is 

the witch doctor. So we have established the hypothetical 
proposition that if Ork was diurnal and awake, then he is the 

witch doctor. Well, it was precisely this hypothetical propo

sition which Ork believed at the time; therefore, Ork's belief 

was correct! This means that Ork was either diurnal and 

awake at the time, or nocturnal and asleep, at the time, but 
we cannot (yet) tell which. Therefore, it is not necessarily 

true that Ork is the witch doctor, since it could be that he 

was nocturnal and asleep at the time. 

Now, by a rather similar argument, Bork's belief is also 
correct : If Bork is either diurnal and awake or nocturnal and 
asleep, in either case, his belief is correct, which means he 

would have to be the witch doctor. Well, this is precisely 

what Bork believes; so Bork's belief is correct. Since Bork's 

belief is correct, then either he is diurnal and was awake at 

the time, or he is nocturnal and was asleep at the time. But in 
either case he must be the witch doctor. 

Since Bork is the witch doctor, then Ork is not. Therefore, 

Ork could not have been awake at the time and diurnal, for 

we showed that if he had been, then he would have been the 

witch doctor. So, Ork was asleep at the time, and also noc
turnal. Therefore, Bork was also asleep at the time, and since 

Bork's belief at the time was correct, then Bork must be noc

turnal. So the witch doctor is nocturnal. 
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1 1  � From the fact that the inhabitant believed that he was 
diurnal and awake, all that follows is that he was not noctur
nal and asleep, and so there are three possibilities :  

(1) He was nocturnal and awake (and believed falsely) . 
(2) He was diurnal and asleep (and believed falsely) . 
(3) He was diurnal and awake (and believed truly) . 
Now, suppose I had told my friend whether the native was 

diurnal or nocturnal; could my friend have then solved the 
problem? Well, that would depend on what I told him. If I 
told him that the native was nocturnal, then he would have 
known that Case 1 above was the only possibility, and so he 
would have known that the native was awake. On the other 
hand, if I told him that the native was diurnal, that would 
have ruled out (1) but would leave open both (2) and (3) , and 
my friend wouldn't have any way of knowing which of these 
two latter possibilities actually held; so he then could not 
have solved the problem. 

Now, my friend did not ask me whether the native was 
diurnal or nocturnal; all he asked was whether he could solve 
the problem if I told him whether the native was diurnal or 
nocturnal. If, in fact, the native were diurnal, then I would 
have had to answer no to my friend's question (because, as I 
have shown, if I told him that the native was diurnal, he 
couldn't solve the problem) , but if the native were nocturnal, 
then I would have had to answer yes to his question (because, 
as I have shown, if I told him that the native was nocturnal, 
then my friend could solve the problem) . Therefore, since my 
friend knew that the native was nocturnal and awake, I must 
have answered yes. 

12 • From the fact that she believed that she was nocturnal 
and asleep, all that follows is that she was not diurnal and 
awake, and so three possibilities remain: 
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(1) She was nocturnal and asleep. 
(2) She was nocturnal and awake. 
(3) She was diurnal and asleep. 

If I had answered yes to my first friend's question, he 

would have known that (3) is the only possibility (by an argu

ment similar to the solution of the last puzzle) . But since he 

didn't solve it, I must have answered no. This, then, rules out 
(3) ,  so we are left with possibilities (1) and (2) . 

Now, consider my second friend. If I had answered yes, 

then he could have figured out that (2) is the only real possi
bility (because (2) is the only one in which she is awake, 

whereas (1) and (3) both hold if she is asleep) . Since this sec
ond friend couldn't solve the problem either, I must have an

swered him no as well, and this rules out possibility (2) . What 

remains is that possibility (1) is the only valid one-that is, 

the native was nocturnal and asleep, as she herself correctly 
believed. 

In brief summary, the fact that my first friend couldn't 

solve the problem rules out (3) , and the fact that my second 

friend couldn't solve it rules out (2) . What remains is (1) : she 

was nocturnal and asleep. 

Epilogue • I told you at the beginning of the chapter that I 
dreamed there was such an island. If there really were such 
an island, then I would have dreamed truly; hence if I were 
one of the inhabitants, I would have to be nocturnal. 

go 



Met apuzzles 

The last two puzzles of the last chapter (not counting the epi
logue) are examples of a fascinating type of puzzle that I am 
tempted to call metapuzzles--or puzzles about puzzles. We 
are given a puzzle without sufficient data to solve it, and then 
we are given that someone else could or could not solve it 
given certain additional information, but we are not always 
told just what this additional information is. We may, how
ever, be given partial information about it, which enables the 
reader to solve the problem. This remarkable genre is unfor
tunately rather rare in the literature. What follow here are 
five such puzzles, starting with some very easy ones and 
progressing to the last, which is the crowning puzzle of this 
and the preceding chapters. 

1 • The Case of John 

This case involved a judicial investigation of identical twins. 
It was known that at least one of them never told the truth, 
but it was not known which. One of the twins was named 
John, and he had committed a crime. (John was not necessar-
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ily the one who always lied.) The purpose of the investigation 
was to find out which one was John. 

"Are you John?" the judge asked the first twin. 
"Yes, I am," was the reply. 

"Are you John?" the judge asked the second twin. 
The second twin then answered either yes or no, and the 

judge then knew which one was John. 
Was John the first twin or the second? 

2 • A Transylvan ian Me tapuzzle 

We learned from Chapter 4 that every Transylvanian is o� 

of four types: (1) a sane human; (2) an insane human; (3) a 

sane vampire; (4) an insane vampire. Sane humans make �:mly 

true statements (they are both accurate and honest) ; insane 

humans make only false statements (out of delusion, not in
tention) ; sane vampires make only false statements (out of dis

honesty, not delusion) ; and insane vampires make only true 

statements (they believe the statement is false, but lie and say 

the statement is true) . 

Three logicians were once discussing their separate trips to 
Transylvania. 

"When I was there," said the first logician, "I met a Tran

sylvanian named Igor. I asked him whether he was a sane 

human. Igor answered me [yes or no] , but I couldn't tell from 
his answer what he was." 

"That's a surprising coincidence," said the second logician. 
"I met that same Igor on my visit. I asked him whether he 

was a sane vampire and he answered me [yes or no] , and I 

couldn't figure out what he was." 

"This is a double coincidence ! " exclaimed the third logi
cian. "I also met Igor and asked him whether he was an in-
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sane vampire. He answered m e  [yes or no] , but I couldn't 
deduce what he was either." 

Is Igor sane or insane? Is he a human or a vampire? 

3 • A Kn ight-Knave Metapuzzle 

My book What Is the Name of This Book? contains a host of 

puzzles about an island on which every inhabitant is either a 

knight or a knave; knights always tell the truth and knaves al

ways lie . Here is a knight-knave metapuzzle. 

A logician once visited this island and came across two in
habitants, A and B .  He asked A, "Are both of you knights?" A 
answered either yes or no. The logician thought for a while, 

but did not yet have enough information to determine what 

they were. The logician then asked A, "Are you two of the 
same type?" (Same type means both knights or both knaves.) 
A answered either yes or no, and the logician then knew what 

type each one was. 

What type is each? 

4 • Kn ights, Knaves, and Normals 

On the island of Knights, Knaves, and Normals, knights al
ways tell the truth, knaves always lie, and those called normal 
can either lie or tell the truth (and sometimes one and some

times the other) . 

One day I visited this island and met two inhabitants, A 

and B .  I already knew that one of them was a knight and the 
other was normal, but I didn't know which was which. I 

asked A whether B was normal, and he answered me, either 

yes or no. I then knew which was which. 

Which of the two is normal? 
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5 • Who Is the Spy? 

Now we come to a far more intricate metapuzzle! 

This case involves a trial of three defendants :  A, B, and C.  

It was known at the outset of the trial that one of the three 

was a knight (he always told the truth) , one a knave (he al
ways lied), and the other was a spy who was normal (he some
times lied and sometimes told the truth) . The purpose of the 

trial was to find the spy. 

First, A was asked to make a statement. He said either that '\ 
C is a knave or that C was the spy, but we are not told which. 

Then B said either that A is a knight, or that A is a knave, or 
that A was the spy, but we are not told which. Then C made 

a statement about B, and he said either that B was a knight, 

or that B was a knave, or that B was the spy, but we are not 

told which. The judge then knew who the spy was and con
victed him. 

This case was described to a logician, who worked on the 

problem for a while, and then said, "1 do not have enough in

formation to know which one is the spy." The logician was 

then told what A said, and he then figured out who the spy 
was. 

Which one is the spy-A, B, or C? 

• S O L U T I O N S . 

1 • If the second twin had also answered yes, the judge ob
viously could not have known which one was John; hence the 
second one must have answered no. This means that either 
both twins told the truth or both lied. But they couldn't have 
both told the truth, because it is given that at least one of 
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them always lies. Therefore, both lied, which means that the 

second twin is John. (It cannot be decided which of the two 
always lies.) 

.2 • The first logician asked Igor whether he was a sane 
human. If Igor is a sane human, he would answer yes; if he is 
an insane human, he would also answer yes (because, being 
insane, he would erroneously believe that he is a sane human 
and then honestly express this belief) ; if Igor is a sane vam
pire, he would also answer yes (because, being sane, he knows 
he isn't a sane human, but would lie and say he was) ; but if 
Igor is an insane vampire, then he would answer no (because, 
being an insane vampire, he believes he is a sane human and 
lies about what he believes) . So an insane vampire will an
swer no to this question; the other three types will answer 
yes .  Now, if Igor had answered no, then the first logician 
would have known that Igor was an insane vampire. But the 
first logician didn't know what Igor was; hence he must have 
gotten a yes answer. All we can infer from this is that Igor is 
not an insane vampire. 

As to the second logician's question, "Are you a sane 
vampire?," an insane human would answer yes, and each 
of the other three types would answer no. (We leave the 
verification of this to the reader.) Since the second logician 
couldn't tell from Igor's answer what Igor was, the answer 
must have been no, which means that Igor is not an insane 
human. 

As to the third logician's question, "Are you an insane 
vampire?," a sane human would answer no, and each of the 
other three types would answer yes. Since the third logician 
couldn't figure out what Igor was, he must have gotten the 

answer yes, which means that Igor is not a sane human. 
Since Igor is neither an insane vampire nor an insane 

human nor a sane human, he must be a sane vampire. 
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3 • There are four possible cases: 
Case L :  A and B are both knights. 
Case 2: A is a knight and B is a knave. 
Case 3: A is a knave and B is a knight. 
Case 4: A and B are both knaves. 
The logician first asked A whether both of them were 

knights. If Case 1,  Case 3, or Case 4 holds, A will answer yes; 
if Case 2 holds, A will answer no. (We leave the verification 
of this to the reader.) Since the logician didn't know from A's 
answer what the natives were, then A must have answered 
yes. All the logician then knew was that Case 2 was out. Next, 
the logician asked A whether both were of the same type. In 
Cases 1 and 3, A would answer yes, and in Cases 2 and 4, A 
would answer no. (Again, I leave the verification of this to the 
reader.) So if the logician had gotten the answer yes, all he 
would have known is that either Case 1 or Case 3 holds, but 

he wouldn't know which. So he must have gotten the answer 
no. He then knew that either Case 2 or Case 4 holds, but he 
had already ruled out Case 2. So he knew that Case 4 must 
hold. And so A and B are both knaves. 

4 • If A had replied yes, then A could have been a knight, or 
A could have been normal (and lied) , and I couldn't have 
known which. If A had replied no, then A couldn't be a 
knight (for then B would be normal, and A would have lied) ; 
so A would have to be normal. The only way I could have 
known which was which is that A said no. Hence A is the 
normal one. 

5 • We, of course, assume that the judge was a perfect rea
soner and also that the logician to whom the problem was 
told was a perfect reasoner. 

There are two possibilities : either the logician was told 
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that A said that C was a knave, o r  he was told that A said that 

C is the spy. We must examine both possibilities. 
Possibility 1: A said that C is a knave. 

There are now three possible cases for what B said, and we 

must examine each: 

Case 1 :  B said that A is a knight. Then: (1) if A is a knight, 

C is a knave (because A said that C is a knave) , hence B is the 
spy; (2) if A is a knave, then B's statement is false, which 

means that B must be the spy (he's not a knave since A is) , 

hence C is a knight; (3) if A is the spy, then B's statement is 
false, which means B is the knave, hence C is the knight. 
Thus we have either: 

(1) A knight, B spy, C knave. 

(2) A knave, B spy, C knight. 

(3) A spy, B knave, C knight. 

Now, suppose C said that B is the spy. Then (1) and (3) are 

ruled out. (If (1) , C, a knave, couldn't claim that B is a spy, 
because B is, and if (3) , C, a knight, couldn't claim that B is a 

spy, because B isn't.) This leaves only (2) open, and the judge 

would then know that B was the spy. 

Suppose C said that B is a knight. Then (1) is the only possi

bility, and the judge would know this and again convict B .  
Suppose C said that B i s  a knave. Then the judge couldn't 

have known whether (1) or (3) holds; hence he couldn't have 

known whether A or B was the spy, so he couldn't have con

victed anyone. Therefore, C didn't say that B is a knave. (Of 

course, we are still working under the assumption for Case 
I-that B said that A is a knight.) 

So, if Case 1 holds, then B is · the only one the judge could 

have convicted. 

Case 2: B said that A is the spy. We leave it to the reader to 

verify that the following are the only possibilities: 
(1) A knight, B spy, C knave. 
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(2) A knave, B spy, C knight. 

(3) A spy, B knight, C knave. 
If C said that B is the spy, then either (2) or (3) could hold, 

and the judge couldn't have found anyone guilty. If C said 

that B is a knight, then only (1) can hold, and the judge con

victed B. If C said that B is a knave, then either (1) or (3) 
could hold, and the judge couldn't have convicted anyone. 
Therefore, C must have said that B is a knight, and B was the 

one convicted. 

So, under Case 2, B was again the one convicted. 

Case 3: B said that A is a knave. In this case there are four 
possibilities (as the reader can verify) ; 

(1) A knight, B spy, C knave. 
(2) A knave, B spy, C knight. 

(3) A knave, B knight, C spy. 
(4) A spy, B knave, C knight. 

If C said that B is the spy, (2) or (3) could hold, and the 
judge couldn't have determined which one was guilty. If C 

said that B is a knight, (1) or (3) could hold, and the judge, 

again, couldn't have convicted anyone. If C said that B is a 

knave, (1) , (3) , or (4) could hold, and once more the judge 
could not have determined where guilt lay. 

Thus Case 3 is ruled out. So we now know that either Case 

1 or Case 2 holds, and in both cases, the judge convicted B .  

So if  Possibility I obtains (if A said that C is  a knave) , then 

B must be the spy. Therefore, if the logician had been told 
that A said that C is a knave, he could solve the problem and 
know that B was the spy. 

Possibility II: Now, suppose the logician had been told that 

A said that C is the spy. I will show that the logician would 

then be unable to solve the problem, because there would be 

a possibility that the judge convicted A and a possibility that 
the judge convicted B, and the logician couldn't know which. 
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To prove this, let us assume that A said that C was the spy. 

Then here is one way the judge could have convicted A: Sup
pose B said that A is a knight and C said that B is a knave. If 

A is the spy, B could be a knave (who falsely claimed that A is 
a knight) , and C could be a knight (who truthfully claims that 

B is a knave) . A (the spy) would have falsely claimed that C is 

the spy. So it really is possible that A, B, and C made these 

three statements and that A is the spy. Now, if B were the 
spy, then A would have to be a knave in order to claim that C 
is the spy, and C would also have to be a knave for claiming 
that B is a knave, and so this is not possible. If C were the spy, 

then A would have to be a knight for truthfully claiming that 

C is a spy, and B would also have to be a knight for truthfully 
claiming that A is a knight, so this is also not possible. There

fore, A must be the spy (if B said that A is a knight and C said 
that B is a knave) . So it is possible that A was the one con

victed. 

Here is a way that B could have been convicted: suppose B 

said that A is a knight and C said that B is the spy. (We con
tinue to assume that A said that C is the spy.)  If A is the spy, 
B is a knave for saying that A is a knight and C is also a knave 

for saying that B is the spy, so this is not possible. If C is the 

spy, then A is a knight (since he said C is the spy) , and B is 
also a knight for saying that A is a knight, so this is also not 
possible. But if B is the spy, there is no contradiction (A could 

be a knave who said C is the spy; C could be a knight who 

said B is the spy; and B could have said that A is a knight) . So 

it is possible that A, B, and C did make these three state

ments, in which case the judge convicted B.  
I have now shown that if  A said that C was the spy, there is 

a possibility that the judge convicted A and a possibility that 

the judge convicted B, and there is no way to tell which. 

Therefore, if the logician had been told that A said that C 
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was the spy, there is no way the logician could have solved 
the problem. But we are given that the logician did solve the 
problem; hence he must have been told that A said that C is a 

knave. Then (as we have seen) , the judge could have con

victed only B. So B is the spy. 
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The Mystery 

of the 

Monte C arlo Lock 

We last left Inspector Craig seated comfortably aboard a 

train outward bound from Transylvania, relieved at the 

thought of returning home. "Enough of these vampires ! "  he 

said to himself. ' 'I'll be glad to get back to London, where 
things are normall " 

Little did Craig realize that another adventure awaited 

him before his return-an adventure of a very different na

ture from the two already related, and one that should appeal 

to those who enjoy combinatorial puzzles. This is what hap
pened: 

The inspector decided to stop off in Paris to attend to a few 

matters, and when he had finished he took a train from Paris 

to Calais, planning to cross the Channel to Dover. But, just as 

he got off at Calais, he was met by a French police officer 
who handed him a wire from Monte Carlo, begging him to 
come at once to help solve an "important problem."  

"Oh, heavens," thought Craig, ''I 'll never get home at this 

rate ! "  

Still, duty was duty, and so Craig completely changed his 
plans, went to Monte Carlo, and was met at the station by an 
official named Martinez, who promptly took him to one of 

the banks. 
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"The problem is this," explained Martinez . "We have lost 

the combination to our biggest safe and to blow it open 

would be prohibitively expensive! "  

"How ever did that happen?" asked Craig. 

"The combination is written on only one card, and one of 
the employees carelessly left it inside the safe when he locked 

it! " 

"Good heavens! "  exclaimed Craig. "No one remembers the 

combination?" 

"Absolutely no one," sighed Martinez . "And the worst of it 
is that if the wrong combination is used, the lock will be 

jammed permanently. Then there will be no recourse left but 

to blow open the safe, which, as I said, just isn't feasible-not 

only because of the cost of the mechanism but also because 

some extremely valuable and highly fragile materials are 
stored in it. " 

"Now, just a minute !"  said Craig, "how can it be that you 

use a lock mechanism that can be permanently damaged by a 

wrong combination?" 

"I was very much against purchasing the lock," said Mar
tinez, "but 1 was overruled by the board of directors. They 

claimed that the mechanism had some uniquely valuable fea

tures which more than compensated for the disadvantage of 

possibly ruining it by using the wrong combination. "  

"This i s  really the most ridiculous situation I've ever 
heard! "  said Craig. 

"1 heartily agree ! "  cried Martinez . "But what is to be 

done?" 

"Frankly, I can't think of anything," replied Craig, "and I 
certainly cannot be of any help, since there are no clues. I'm 
very much afraid I have made this trip for nothing! "  

"Ah, but there are clues ! "  said Martinez, a little more 

brightly. "Otherwise 1 would never have put you to the trou

ble of coming here ."  
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"Oh?" said Craig. 

"Yes," said Martinez . "Some time ago we had a very inter

esting though rather queer employee, a mathematician par

ticularly interested in combinatorial puzzles . He took a keen 
interest in combination locks and studied the mechanism of 
this safe with great care. He pronounced it the most unusual 

and clever locking mechanism he had ever seen. He was con

stantly inventing puzzles, with which he amused many of us, 

and once he wrote a paper listing several properties of the 

locking mechanism, and asserting that from these properties 
we could actually deduce a combination that would open the 

safe . He gave this to us as a recreational puzzle, but it was far 

too difficult for any of us to solve, so we soon forgot it. " 

"And where is this paper?" asked Craig. "I suppose it is 
also locked up in the safe with the card bearing the combina
tion?" 

"Happily, no,"  said Martinez, as he produced the manu

script from his desk drawer. "Fortunately, I kept it in here. "  

Inspector Craig studied the manuscript carefully. 

"I can see why none of you solved the puzzle; it appears 
extremely difficult! Wouldn't it be easier simply to contact 

the author? Surely he remembers or could reconstruct the 

combination, couldn't he?" 

"He worked here under the name of 'Martin Farkus,' but 

that was probably an assumed name," replied Martinez. "No 
efforts to find him have been successful." 

"Hm! " replied Craig, "I guess the only alternative is to try 

and solve this puzzle, but it might take weeks or several 

months."  

"There i s  one more thing I must tell you," said Martinez. 
"It is absolutely imperative that the safe be opened by June 

first; it contains some state documents that have to be pro

duced on the morning of June second. If we cannot find the 

combination by then, we will be forced to blow open the safe 
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regardless of cost. The document itself won't be hurt by the 
explosion, since it is in a very stout inner safe, as far as possi
ble from the door of the outer safe. And as for the other 
items-well, this document comes first! But it would be 
worth quite a sum of money to us not to have to resort to that 
alternative!"  

' 'I'll see what I can do," said Craig, rising. "I  can't promise 
you anything, though of course I'll do my best." 

Now, let me tell you about the contents of Farkus's manu
script. To begin with, the combinations used letters, not 
numbers. And so by a combination, we will mean any string 
of any of the twenty-six capital letters of the alphabet. It can 
be of any length and contain any number of letters occurring 
any number of times ;  for example, BABXL is a combination; 
so is XEGGEXY. Also, a letter standing alone counts as a 
combination (a combination of length 1) . Now, certain com
binations will open the lock, certain ones will jam the lock, 
and the remaining combinations have no effect on the mech
anism whatever. Those that have no effect on the mechanism 
are called neutral. We shall use the small letters x and y to 
represent arbitrary combinations, and by xy is meant combi
nation x followed by combination y; for example, if x is the 
combination GAQ and y is the combination DZBF, then xy is 
the combination GAQDZBF. By the reverse of a combination 
is meant the combination written backwards; for example, 
the reverse of the combination BQFR is RFQB. By the repeat, 
xx, of a combination x is meant the combination followed by 
itself; for example, the repeat of BQFR is BQFRBQFR. 

\ 

Now, Farkus (or whatever his real name was) referred to 
certain combinations as being specially related to others (or 
possibly to themselves) , but he never defined what he meant 
by this term. Nevertheless, he listed enough properties of this 
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"special relation" (whatever that might be) to enable a clever 
person to find a combination that opens the lock! He listed 
the fonowing five key properties (which he said held for any 
combinations x and y ) :  

Property Q: For any combination x, the combination QXQ is 
specially related to x. (For example, QCFRQ is specially re
lated to CFR.) 

Property L: If x is specially related to y, then Lx is specially 
related to Qy . (For example, since QCFRQ is specially re
lated to CFR, then LQCFRQ is specially related to QCFR.) 

Property V (the reversal property) : If x is specially related 
to y, then Vx is specially related to the reverse of y. (For ex
ample, since QCFRQ is specially related to CFR, then 
VQCFRQ is specially related to RFG) 

Property R (the repetition property) : If x is specially re
lated to y, then Rx is specially related to yy (the repeat of y ) .  
(For example, since QCFRQ i s  specially related to CFR, then 
RQCFRQ is specially related to CFRCFR. Also-as we saw 
in the example accompanying Property V-VQCFRQ is spe
cially related to RFC, and hence RVQCFRQ is specially re
lated to RFCRFG) 

Property Sp: If x is specially related to y, then if x jams the 
lock, y is neutral, and if x is neutral, then y jams the lock. (For 
example, we have seen that RVQCFRQ is specially related to 
RFCRFC. Therefore, if RVQCFRQ should jam the lock, then 
RFCRFC would have no effect on the mechanism, and if 
LVQCRFQ has no effect on the mechanism, then RFCRFC 
jams the lock.) 

From these five conditions, it is indeed possible to find a 
combination that opens the lock. (The shortest one I know is 
of length 10, and there are others.) 

Now, the reader is hardly expected to solve this puzzle at 
this point; there is a whole theory behind this mechanism 
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which will gradually unfold in the course of the next few 
chapters. This theory is related to some very interesting dis
coveries in mathematics and logic that will be apparent later 
on. 

As a matter of fact, Craig worked on this puzzle for several 
days after his interview with Martinez, but was unable to 
solve it. 

"No sense remaining here any longer," thought Craig. "I 

have no idea how long this will take, and I might just as well 
work on it at home." 

And so Craig went back to London. That the puzzle ever 
did get solved was due not only to the ingenuity of Craig and 
two of his friends (whom we shall meet presently) , but also to 
the remarkable concatenation of circumstances about to un
fold. 

108 



A Curious 

Number M achine 

After Craig's return to London, he at first spent a good deal 
of time on the Monte Carlo lock puzzle. Then, since he was 
getting nowhere, he decided that it might be best to rest a 
while from the problem and went to visit an old friend 
named Norman McCulloch whom he had not seen for years. 
He and McCulloch had been fellow students at Oxford, and 
Craig recalled him in those days as a delightful, if somewhat 
eccentric, chap who was constantly inventing all sorts of cu
rious gadgets. Now, this whole story takes place in the days 
before modem computers were invented, but McCulloch had 
put together a crude mechanical computer of a sort. 

' 'I've been having ever so much fun with this device,"  ex
plained McCulloch. "I've not yet founa-any practical use for 
it, but it has some intriguing features ."  

"What does it  do?" asked Craig. 
"Well," replied McCulloch, "you put a number into the 

machine, and after a while a number comes out of the ma
chine." 

"The same number or a different one?" asked Craig. 
"That depends on what number you put in."  
"I see," replied Craig. 
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"Now," continued McCulloch, "the machine doesn't ac
cept all numbers--only some. Those which the machine ac
cepts, I call acceptable numbers."  

"That sounds like perfectly logical terminology," said 
Craig, "but I would like to know which numbers are accept
able and which are not. Is there a definite law concerning 
this? Also, is there a definite law concerning what number 
comes out once you have decided what acceptable number to 
put in?" 

"No," replied McCulloch, "deciding to put the number in 
is not enough; you have actually to put the number in."  

"Oh, well, of  course !" said Craig. "I  meant to  ask whether 
once the number has been put in, if it is definitely deter
mined what number comes out." 

"Of course it is," replied McCulloch. "My machine is not a 
random device ! It operates according to strictly deterministic 
laws. 

"Let me explain the rules," he continued. "To begin with, 
by a number I mean a positive whole number; my present 
machine doesn't handle negative numbers or fractions. A 
number N is written in the usual way as a string of the digits 
0 ,1 ,2,3,4,5,6, 7,8,9. However, the only numbers my machine 
handles are those in which 0 does not occur; for example, 
numbers like 23 or 5492, but not numbers like 502 or 
3250607. Given two numbers N,M-now by NM I don 't 
mean N times M !  By NM I mean the number obtained by 
first writing the digits of N in the order in which they occur, 
and then following it by the digits of M; so, for example, if N 
is the number 53 and M is the number 728, by NM I mean 
the number 53728. Or if N is 4 and M is 39, by NM I mean 
439·" 

"\Vhat a curious operation on numbers! " exclaimed Craig 
in surprise . 
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"I know," replied McCulloch, "but this is the operation 
the machine understands best. Anyway, let me explain to you 
the rules of operation. I say that a number X produces a num
ber Y, meaning that X is acceptable and that when X is put 
into the machine, Y is the number that comes out. The first 
rule is as follows: 

"Rule 1. :  For any number X, the number 2X (that is, 2 fol
lowed by X, not 2 times Xl) is acceptable, and 2X produces X. 

"For example, 253 produces 53; 27482 produces 7482; 
23985 produces 3985, and so forth. In other words, if I put a 
number 2X into the machine, the machine erases the 2 at the 
beginning and what is left-the X--comes out." 

"That's easy enough to understand," replied Craig. "What 
are the other rules?" 

"There is only one more rule," replied McCulloch, "but 
first let me tell you this : For any number X, the number X2X 
plays a particularly prominent role; I call the number X2X 
the associate of the number X. So, for example, the associate 
of 7 is 727; the associate of 594 is 5942594- Now, here is the 
other rule: 

"Rule 2:  For any numbers X and Y, if X produces Y, then 
3X produces the associate of Y.  

"For example, 27 produces 7, by Rule 1 ;  therefore 327 pro
duces the associate of 7, which is 727. Thus 327 produces 727. 
Again, 2586 produces 586; hence 32586 produces the associ
ate of 586, which is 5862586." 

At this point, McCulloch fed the number 32586 into the 
machine and, after much groaning and squeaking, the num
ber 5862586 finally did come out. 

"Machine needs a little oiling," commented McCulloch. 
"But let's consider another example or two to see if you have 
fully grasped the rules. Suppose I put in 3327; what will 
come out? We already know that 327 produces 727; so 3327 
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produces the associate of 727, which is 7272727. What num
ber does 33327 produce? Well, since 3327 produces 7272727 
(as we have just seen), then 33327 must produce the associate 
of 7272727, which is 727272727272727. As another example, 
259 produces 59; 3259 produces 59259; 33259 produces 
59259259259; 333259 produces 59259259259259259259259." 

"I see," said Craig, "but the only numbers you have men
tioned so far which seem to 'produce' anything are numbers 
beginning with either 2 or 3. What about numbers beginning, 
say, with 4?" 

"Oh, the only numbers accepted by this machine are those 
beginning with 2 or 3, and not even all of those are accept
able. I am planning one day to build a larger machine which 
accepts more numbers."  

"What numbers beginning with 2 or 3 are not accept
able?" asked Craig. 

"Well, 2 alone is not acceptable, since it does not come 
within the scope of either Rule 1 or Rule 2, but any multi
digital number beginning with 2 is acceptable. No number 
consisting entirely of 3's is acceptable. Also 32 is not accept
able, nor is 332, nor any string of 3's followed by 2. But for 
any number X, 2X is acceptable; 32X is acceptable; 332X and 
3332X are acceptable ;  and so forth. In short, the only accept
able numbers are 2X, 32X, 332X, 3332X, and any string of 3's 
followed by 2X. And 2X produces X; 32X produces the asso
ciate of X; 332X produces the associate of the associate of 
X-which it is convenient to call the double associate of X; 
3332X produces the associate of the associate of the associate 
of X-this number I call the triple associate of X-and so 
on." 

"1 fully understand," said Craig, "and now I would like to 
know just what are the curious features of this machine to 
which you have alluded?" 
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"Oh," replied McCulloch, "it leads to all sorts of curious 
combinatorial puzzles-here, let me show you some! " 

1 

"To begin with a simple example," said McCulloch, "there is 
a number N which produces itself; when you put N into the 
machine, out comes the very same number N. Can you find 
such a number?" 

2 

"Very good," said McCulloch, after Craig showed him his so
lution. "And now for another interesting feature of this ma
chine : There is a number N which produces its own associ
ate-in other words, if you put N into the machine, the 
number N2N comes out. Can you find such a number?" 

Craig found this puzzle more difficult, but he managed to 
solve it. Can you? 

3 

"Excellent! " said McCulloch. "But there is one thing I would 
like to know: how did you go about finding this number? Was 
it just trial and error, or did you have some systematic plan? 
Also, is the number you found the only number that produces 
its own associate, or are there others?" 

Craig then explained his method for finding the number N 
in the last problem, and also answered McCulloch's question 
as to whether there were other possible solutions. The reader 
should find Craig's analysis here to be of considerable inter-
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est, and it facilitates, moreover, the solutions of several other 
puzzles of the present chapter. 

4 

"Apropos of my last question," said McCulloch, "how did 
you solve the first problem? Is there more than one number 
that produces itself?" 

Craig's answer is given in the solutions. 

5 

"Next," said McCulloch, "there is a number N which pro
duces 7N (that is, 7 followed by N) . Can you find it?" 

6 

"Now, let's consider another question," said McCulloch. "Is 
there a number N such that 3N produces the associate of N?" 

7 

"And is there an N," asked McCulloch, "which produces the 
associate of 3N?" 

8 

"A particularly interesting feature of this machine," said 
McCulloch, "is that for any number A there is some number 
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Y which produces AY. How do you prove this, and, given a 
number A, how do you find such a number Y?" 

Note: This principle, simple as it is, is more important than 
McCulloch realized at the time! It will crop up several times 
in the course of this book. We shall call it McCulloch's Law. 

9 

"Now," continued McCulloch, "given a number A, is there 
necessarily some Y that produces the associate of AY? For ex
ample, is there a number that produces the associate of S6Y, 
and if so, what number does this?" 

10 

"Another interesting thing," said McCulloch, "is that there is 
a number N that produces its own double associate. Can you 
find it?" 

11 

"Also," said McCulloch, "given any number A there is a 
number X that produces the double associate of AX. Can you 
see how to find such an X, given the number A? For example, 
can you find an X that produces the double associate of 
78X?" 

Here are some more problems that McCulloch gave Craig 
on this day. (Except for the last of them, they are not of theo
retical importance, but the reader might have fun playing 
with them.) 
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12 

Find a number N such that 3N produces 3N. 

13 

Find a number N such that 3N produces zN. 

Find a number N such that 3N produces 3zN. 

Is there an N such that NNNz and 3Nz produce the same 
number? 

16 

Is there an N whose associate produces NN? Is there more 
than one such N? 

17 

Is there an N such that NN produces the associate of N? 

Find an N such that the associate of N produces the double 
associate of N. 
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Find an N that produces N23. 

20 • A Neg ati ve Re sul t  

"You know," said McCulloch, "for quite some time I have 
been trying to find a number N that produces the number N2, 
but so far all my attempts have failed. I wonder whether in 
fact there is no such number or whether I just haven't been 
clever enough to find one !"  

This problem immediately engaged Craig's attention. He 
took out a notebook and pencil and started working on it. 
After a while he said, "Don't lose any more time looking for 
such a number: it cannot possibly exist ! "  

How did Craig know this? 

• S O L U T I O N S . 

1. ,. One such number is 323. Since 23 produces 3 (by Rule 1) ,  
then, by Rule 2, 323 must produce the associate of 3, which is 
323-the very same number! 

Are there other such numbers? For Craig's answer, see the 
solution to Problem 4 . 

.2 • The number Craig found was 33233. Now, any number 
of the form 332X produces the double associate of X, so 
33233 produces the double associate of 33-that is, the asso
ciate of the associate of 33. Now, the associate of 33 is the 
original number 33233; hence the double associate of 33 is 
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the associate of 33z33. Thus 33Z33 produces the associate of 
33z33-that is, it produces its own associate. 

How was this number found, and is it the only solution? 
Craig gives his answers to these questions in the solution to 
the next problem. 

3 • Here is how Craig found a solution to Problem z and also 
settled the question of whether or not there are any other so
lutions. I shall give his explanation in his own words: 

"My problem was to find a number N that produces NzN. 
This N must be one of the forms zX, 3zX, 33zX, 333zX, etc . ,  
and I must discover X. Could a number of the form zX work? 
Clearly not, since zX produces X, which is obviously shorter 
(has fewer digits) than the associate of zX. So no number of 
the form zX could possibly work. 

"What about a number of the form 3zX? It also produces a 
number which is too short; it produces the associate of X, 
which is obviously shorter than the associate of 3zX. 

"What about a number of the form 33zX? Well, it pro
duces the double associate of X, which is XzXzXzX, whereas 
what is required is to produce the associate of 33zX, which is 
33zXz33zX. Now, can XzXzXzX be the same number as 
33zXz33zX? What about the comparative lengths? Well, let
ting h be the number of digits in X, the number XzXzXzX 
has 4h + 3 digits (since there are four X's and three z's) ,  
whereas 332Xz33ZX has zh + 7 digits. Can 4h + 3 = zh + 7? 
Yes, if h = z, but for no other h. So lengthwise, a number of 
the form 33ZX may be a possibility, but only if h has two 
digits. 

"Are there any other possibilities? What about a number 
of the form 3332X? It produces the triple associate of X, 
which is XzXzXzXzXzXzXzX, whereas what is required is 
to produce the associate of 333zX, which is 333zXz333zX. 
Could these numbers be the same? Again, letting h be the 
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length of X, the number XZXZXZX2X2X2X2X has 8h + 7 
digits, whereas 3332X23332X has 2h + 9 digits. The only so
lution to the equation 8h + 7 = 2h + 9 is that h = ¥.3, so there 
is no whole number h that will make 8h + 7 = 7h + 9; there
fore no number of the form 3332X can work. 

"What about a number of the form 33332X? It produces 
the quadruple associate of X, which has a length of 16h + 15, 
whereas the associate of X has a length of 2h + 11.  Of course, 
for any positive integer h, 16h + 15 is larger than 2h + 11 ,  so 
a number of the form 33332X produces something too large. 

"If we take a number beginning with five 3'S instead of 
four, the disparity between the lengths of the number it is 
supposed to produce and the number it actually produces is 
even greater, and if we take a number beginning with six or 
more 3's, the disparity is greater yet. Therefore, we are back 
to 332X as the only possible solution to the problem, so X 
must be a two-digit number. Thus, the desired N must be of 
the form 332ab, where a and b are single digits to be deter
mined. Now, 332ab produces the double associate of ab, 
which is abzab2ab2ab. It is desired that 332ab produce 
the associate of 332ab, which is 332ab2332ab. Can these 
two numbers be the same? Let us compare them digit by 
digit : 

ab2ab2ab2ab 
332ab2332ab 

"Comparing the first digits of each number, we see that a 
must be 3. Comparing the second digits, b must also be 3. So 
N = 33233 is a solution, and is the only possible solution."  

4 • "To tell you the truth," said Craig, "I  solved the first 
problem by intuition; 1 didn't find the number 323 by any 
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systematic method. Also, I have not yet considered whether 
there is any other number that produces itself. 

"But I don't think this should be too difficult to settle: Let's 
see now, could a number of the form 33zX work? It would 
produce the double associate of X, which is XzXzXzX, which 
has a length of 4h + 3, with h being the length of X. But what 
is required is to produce 332X, which has a length of h + 3. 
Obviously, 4h + 3 is greater than h + 3, if h is a positive num
ber, so 33zX produces a number that is too large. What about 
3332X, or some number beginning with four or more 3's? No, 
the disparity would be greater yet; the only possibility is a 
number of the form 32X (a number of the form 2X is clearly 
no good; it can't produce 2X, since it produces X) . Now, 32X 
produces X2X, and what is required is that it produce itself, 
which is 32X. So 32X must be the same as X2X. Letting h be 
the length of X, 32X has a length of h + 2, and X2X has a 
length of 2h + 1 .  So 2h + 1 = h + 2;  this means that h must 
be 1 .  So X is a single digit. Now, for what digit a is it the case 
that a2a = 32a? Obviously, a must be 3. Hence 323 is the 
only solution."  

5 • Take N to  be  3273. I t  produces the associate of  73, which 
is 73273, which is 7N. So 73z73 is a solution. (It is, in fact, the 
only solution, as can be shown by a comparative-lengths ar
gument of the type considered in the last two problems.) 

6 • Since 323 produces itself, then 3323 must produce the 
associate of 323. So, letting N = 323, 3N produces the associ
ate of N. (It is the only solution.) 

7 • The solution is 332333. Let us check: Let N be the num
ber 33Z333. It produces the double associate of 333, which is 
the associate of 333z333-in other words, the associate of 3N. 

120 



A C UR I OU S  NUM B ER M A C H I NE 

8 • This obviously is a straightforward generalization of 
Problem 5: We saw that for N = 3273, N produces 7N. There 
is nothing special about 7 that makes this work; for any num
ber A, if we let Y = 32A3, Y produces A Y (because it pro
duces the associate of A3, which is A32A3, which is AY) . So, 
for example, if we want a number Y that produces 837Y, we 
take Y to be 328373. 

This fact will subsequently turn out to be of considerable 
theoretical importance! 

9 • The answer is yes; take Y to be 332A33. It produces the 
double associate of A33, which is the associate of A332A33. 
But A332A33 is AY, so Y produces the associate of AY. 

For the particular example suggested by McCulloch-to 
find a number Y that produces the associate of s6Y-the so
lution is Y = 3325633. 

10 • The solution is 3332333. It produces the triple associate 
of 333, which is the double associate of the associate of 333. 
Now, the associate of 333 is 3332333, so 3332333 produces 
the double associate of 3332333. 

The following general pattern should be noted: 323 pro
duces itself; 33233 produces its own associate; 3332333 pro
duces its own double associate. Also, 333323333 produces its 
own triple associate, 33333233333 produces its own quadru
ple associate, and so forth (as the reader can check for him
self) . 

1 1  • The solution is X = 3332A333. It produces the triple as
sociate of A333, which is the double associate of the associate 
of A333. Now, the associate of A333 is A3332A333, which is 
AX. So X produces the double associate of AX. 
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For the particular example, A is 78, so the solution is 
333278333. 

12 • Obviously, the answer is 23. (We already know that 323 
produces 323, so, letting N = 23, 3N produces 3N.) 

13 .. The answer is 22. 

14 • The answer is 232. 

15 • Of course : N = 2.  

16 • Any string of 2' s will work. 

17 • Yes, 32 works. 

18 • Take N = 33. 

19 • Take N = 323z3. 

20 • As the reader can verify for himself, any number N be
ginning with two or more 3's will produce a number of 
greater length than that of Nz (for example, if N is of the 
form 33zX, and h is the length of X, N produces the double 
associate of X, which has a length of 4h + 3, whereas N2 has a 
length of h + 4). Also, no N of the form zX could work, so if 
there is any N that produces Nz, it must be of the form 3zX. 
Now, 3zX produces XzX, and what is required is to produce 
3zXz. If XzX is the same number as 3zXz, then, letting h be 
the length of X, it must be that 2h + 1 = h + 3, which means 
h = z. So the only number that could work (if there is one) 
must be of the form 3zab, where a and b are single digits to 
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be determined. Now, 32ab produces abzab, and what is re
quired is to produce 32abz. So, can ab2ab be the same num
ber as 32abz? Let us compare them digit by digit: 

abzab 
3zabz 

Comparing the first digits, we get a = 3; comparing the 
third digits, we find a = 2-and so the problem is impossible.  
There is no N that produces Nz ! 
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Cr aig's L aw 

A couple of weeks later, Craig paid another visit to McCul
loch. 

"I heard you have enlarged your machine," said Craig, 
"and some mutual friends have told me that your new ma
chine does some very interesting things. Is that true?" 

"Ah, yes !" replied McCulloch, with an air of pride. "My 
new machine obeys Rules 1 and z of my oId machine, and in 
addition, it has two other rules. But I've just brewed some 
tea-let's have some before 1 show you the new rules." 

After an excellent tea, complete with delicious hot
buttered crumpets, McCulloch began: 

"By the reverse of a number, I mean the number written 
backwards ; for example, the reverse of 5934 is 4395. Now, 
here is the first of the additional rules: 

"Rule 3: For any numbers X and Y, if X produces Y, then 
4X produces the reverse of Y .  

"Let me illustrate," said McCulloch. "Pick a number Y at 
random. "  

"All right," said Craig, "suppose we take 7695."  
"Very good," said McCulloch. "Let's take an X which pro

duces 7695-we'1l take zJ695-and put 427695 into the ma
chine and see what happens."  
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McCulloch then put 427695 into the machine and, sure 
enough, out came 5967-the reverse of 7695. 

"Before I show you the next rule," said McCulloch, "let 
me show you some of the things that can be done with this 
rule-together, of course, with Rules 1 and 2 ."  

1 

"You recall ," said McCulloch, "that the number 323 pro
duces itself. Also, with my oId machine--which didn't have 
Rule 3 built into it, only Rules 1 and 2-the number 323 was 
the only number that produced itself. With my present ma
chine, the situation is different. Can you find another number 
that produces itself? Also, how many such numbers are 
there?" 

It didn't take Craig too long to solve this. Can you do 
it? (The answer, in Craig's own words, is given in the solu
tions.) 

2 

"That was excellent," said McCulloch, after Craig had com
pleted his exposition. "Let me give you another problem: I 
call a number symmetric if it reads the same both forwards 
and backwards-that is, if it is equal to its own reverse. Num
bers like 58385 or 7447, for example, are symmetric. Num
bers that are not symmetric I .  call nonsymmetric-numbers 
like 46733 or 3251 .  Now, there obviously is a number that 
produces its own reverse-namely, 323-because 323 both 
produces itself and is symmetric. With my first machine, 
which did not have Rule 3, there was no nonsymmetric num-
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ber that produced its own reverse. But with Rule 3, there is 
one-in fact, several. Can you find one?" 

3 

"And then," said McCulloch, "there are numbers that pro:" 
duce the associates of their own reverse . Can you find 
one?" 

"And now," said McCulloch, "here is the second new rule : 
"Rule 4: If X produces Y, then SX produces IT. 
"I refer to IT as the repeat of Y." 
McCulloch then gave Craig the following problems. 

4 

Find a number that produces its own repeat. 

5 

Find a number that produces the reverse of its own repeat. 

6 

"That's curious," said McCulloch after Craig had solved 
Problem 5. "I obtained a different solution-also one with 
seven digits."  

There are indeed two seven-digit numbers each of which 
produces the reverse of its own repeat. Can you find the sec
ond of these? 
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7 

"For any number X," said McCulloch, "S2X obviously pro
duces the repeat of X. Can you find a number X such that SX 
produces the repeat of X?" 

Craig thought about this for a bit and suddenly burst out 
laughing; the solution was so obvious! 

8 

"And now," said McCulloch, "there is a number that pro
duces the repeat of its associate. Can you find it?" 

9 

"Also,"  said McCulloch, "there is a number that produces 
the associate of its own repeat. Can you find it?" 

O P E R A T I O N  N U M B E R S  

"You know," said Craig quite suddenly, "I just realized that 
almost all these problems can be solved by one general prin
ciple ! Your machine has a very pretty property; once this is 
realized, it is possible to solve not only the problems you have 
given me but an infinite host .of others ! 

"For example," continued Craig, "there must be a number 
that produces the repeat of the reverse of its own associate, 
and a number that produces the associate of the repeat of its 
own reverse, and a number that-" 
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"How extraordinary! "  interrupted McCulloch. "I was 
looking for such numbers but couldn't find them. What are 
they?" 

"You'll be able to find them within seconds, once I tell you 
this law!"  

"What i s  the law?" pleaded McCulloch. 
"Indeed," continued Craig, who was greatly enjoying 

McCulloch's mystification, "I can even give you a number X 
that produces the repeat of the reverse of the double associ
ate of X, or a number Y that produces the reverse of the dou
ble associate of ITYY, or a number Z that-" 

"Enough !"  cried McCulloch. "Why don't you just tell me 
what this law is and leave the applications till later?" 

"Fair enough! "  replied Craig. 
At this point, the inspector picked up a pad of paper that 

was lying on the table, took out a pencil, and sat McCulloch 
down beside him so that his friend could see what he was 
writing. 

"To begin with," said Craig, "I presume that you are fa
miliar with the notion of an operation on numbers; for exam
ple, the operation of adding 1 to a number, or multiplying a 
number by 3, or squaring a number; or, what is more relevant 
for your machine, taking the reverse of a number, or the re
peat of a number, or the associate of a number, or perhaps a 
more complex operation like taking the reverse of the repeat 
of the associate of a number. Now, I shall use the letter F to 
stand for some given arbitrary operation, and for any number 
X, by F(X)-read 'F of X'-I mean the result of performing 
the operation F on the number X. This, as of course you 
know, is standard mathematical practice. So, for example, if 
F is the reverse operation, F(X) is the reverse of X; if F is the 
repetition operation, F(X) is the repeat of X, and so forth. 

"Now, there are certain numbers-any number, in fact, 
composed of the digits 3, 4, or 5-which I shall call operation 
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numbers, since they determine operations that your machine 
can perform: Let M be any number composed of the digits 3, 
4, or 5, and let F be any operation. I will say that M deter
mines the operation F, meaning that for any two numbers X 
and Y where X produces Y, the number MX must produce 
F(Y) . For example, if X produces Y, then 4X produces the re
verse of Y-by Rule 3-and so I say that the number 4 deter
mines or represents the reversal operation; similarly, by Rule 
4, the number 5 determines the repetition operation. The 
number 3 determines the association operation, that is, the 
operation of taking the associate of a number. Now, suppose 
F is the operation which, when applied to any number X, 
yields the associate of the repeat of X. In other words, F(X) is 
the associate of the repeat of X. Is there a number M that 
represents this operation, and if so, what is that number?" 

"Obviously 35," answered McCulloch, "because if X pro
duces Y, 5X produces the repeat of Y; hence 35X produces 
the associate of the repeat of Y. Thus, 35 represents the oper
ation of taking the associate of the repeat of a number. " 

"Right! "  replied Craig. "1 have now defined what it means 
for an operation number M to represent an operation, and 
this operation I will refer to as Operation M. So, for example, 
Operation 4 is the reversal operation; Operation 5 is the rep
etition operation; Operation 35 is the operation of taking the 
associate of the repeat, and so forth . . . .  

"Here is a question," he continued. "Is it possible for two 
different numbers to represent the same operation? That is, 
can there be operation numbers M and N such that M is dif
ferent from N, yet operation M is the same as operation N?" 

McCulloch thought for a moment. "Oh, of course ! "  he 
said. "The numbers 45 and 54 are different, but they deter
mine the same operation, since the reverse of the repeat of a 
number is the same as the repeat of its reverse."  

"Good," replied Craig, "though 1 was thinking of a differ-
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ent example : To begin with, what operation does 44 repre
sent?" 

"Well," said McCulloch, "Operation 44 applied to X gives 
the reverse of the reverse of X, which is X itself. I don't know 
what name to give to an operation which, when applied to 
any number X, simply gives X itself." 

"In mathematics, it is commonly called the identity opera
tion," remarked Craig, "and so the number 44 determines the 
identity operation. But so does 4444, or any number com
posed of an even number of 4's, therefore there are infinitely 
many different numbers that represent the identity opera
tion. And, more generally, given any operation number M, 
then M followed or preceded by an even number of 4's (or 
both) represents the same operation as does M alone."  

" I  see that," said McCulloch. 
"And now," said Craig, "given an operation number M 

and any number X, I want a convenient notation for the re
sult of applying operation M to the number X; 1 shan simply 
write this as 'M(X) . '  For example, 3(X) is the associate of X;  
4 (X) is  the reverse of X; 5(X) is  the repeat of X;  435(X) is  the 
reverse of the associate of the repeat of X. Is this notation 
clear?" 

"Oh, yes,"  replied McCulloch. 
"You won't, I trust, ever confuse the notation M(X) with 

MX; the former means the result of applying operation M to 
X; the latter is the number M followed by the number X, and 
these are very different things ! For example, 3 (5) is not 35, 
but 525 ."  

"I  understand that," said McCulloch, "but can i t  ever hap
pen-by some sort of coincidence-that M(X) is the same as 
MX?" 

"Good question," replied Craig. ' 'I'll have to think about 
that! "  
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"First, let's have another cup of tea," suggested McCul
loch. 

"Excellent! "  replied Craig. 

While our two friends are enjoying their tea, I'd like to 
give you some puzzles about operation numbers; they will 
afford good practice in the use of the notation M(X) , which 
will play a vital role later on. 

10 

The answer to McCulloch's last question is yes : There are an 
operation number M and a number X such that M(X) = MX. 
Can you find them? 

1 1  

I s  there an operation number M whereby M(M) = M ?  

12 

Find an operation number M and a number X whereby 
M(X) = xxx. 

Find an operation number M and a number X whereby 
M(X) = M + 2. 
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Find M and X such that M(X) is the repeat of MX. 

Find operation numbers M and N such that M(N) is the re
peat of N(M) . 

.1.6 

Find two distinct operation numbers M and N such that 
M(N) = N(M).  

17 

Can you find two operation numbers M and N such that 
M(N) = N(M) + 39? 

What about two operation numbers M and N such that 
M(N) = N(M) + 49Z? 

Find two distinct operation numbers M and N such that 
M(N) = MM and N(M) = NN. 
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"You still haven't told me the principle you claim you have 
discovered," said McCulloch, after they had finished their 
tea. "I presume that your talk of operation numbers and op
erations is leading up to this?" 

"Oh, yes," replied Craig, "and I think you are now ready 
to grasp this law. Do you recall some of the earlier problems 
you gave me? For example, finding a number X that pro
duced its own repeat. In other words, we wanted a number X 
that produces 5(X) . Or, in finding a number X that produced 
its own associate, we wanted an X that produces 3(X) . Or, 
again, a number X that produces the reverse of X is a number 
that produces 4(X) . But all these are special cases of one gen
eral principle-namely, that for any operation number M,  
there must be  an X that produces M(X) ! In  other words, given 
any operation F that your machine can perform-that is, any 
operation F which is determined by some operation number 
M-there must be an X that produces F(X) . 

"Moreover," continued Craig, "given an operation num
ber M, we can find an X that produces M(X) by a very simple 
recipe. Once you know this general recipe, then, for example, 
you can find an X that produces 543(X) , which solves the 
problem of finding an X that produces the repeat of the re
verse of the associate of X, and also you can find an X that 
produces 354(X), which solves the other problem of finding a 
number that produces the associate of the repeat of its own 
reverse. Or, as I told you, I can find a number X that pro
duces the repeat of the reverse of the double associate of X
in other words, an X which produces 5433(X) . Without the 
recipe I have in mind, such problems can be exceedingly dif
ficult, but with it they are child's play !"  
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"I am all ears," said McCulloch. "What is this remarkable 
recipe?" 

"I am about to ten you," said Craig, "but first let's get one 
elementary fact absolutely straight-namely, that for any op
eration number M and for any numbers Y and Z, if Y pro
duces Z, then MY produces M(Z) . For example, if Y produces 
Z, then 3Y produces 3(Z)-the associate of Z; 4 Y produces 
4(Z) ; 5Y produces 5(Z) ; 34Y produces 34(Z) . And likewise for 
any operation number M, if Y produces Z, MY produces 
M(Z) . In particular, since 2Z is an example of some Y that 
produces Z, then it is always the case that M2Z produces 
M(Z) . (For example, 32Z produces 3(Z)-the associate of Z; 
42Z produces 4(Z)-and for any operation number M,  M2Z 
produces M(Z) . )  Indeed, we could have defined M(Z) as the 
number produced by M2Z."  

"I  understand all that," said McCulloch. 
"Well,"  replied Craig, "this fact is very easy to forget, so 

let me repeat it, and let us carefully make a note of it and re
member it well ! 

"Pact 1 :  For any operation number M and any numbers Y 
and Z, if Y produces Z, then MY produces M(Z) . (In particu
lar, M2Z produces M(Z) .) 

"From this fact," Craig went on, "together with a fact 
which you discovered about your first machine and which 
also holds for your present machine, it easily follows that, 
given any operation number M, there must be some number 
X that produces M(X)-X produces the result of applying op
eration M to X. And, given M, such an X can be found by a 
simple general recipe ."  
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20 

Craig has discovered a basic principle that will henceforth be 
called Craig's Law---namely, that for any operation number 
M, there must be some number X that produces M(X) . How 
do you prove Craig's Law and, given an M, how do you find 
such an X? For example, what X produces 543 (X)? Or, what 
X produces the repeat of the reverse of the associate of X? 
And what X produces the associate of the repeat of the re
verse of X-that is, what X produces 354(X)? 

"I have a few more problems I'd like you to see," said 
McCulloch, "but it's getting quite late. Why don't you stay 
the night? I can show you the problems tomorrow."  

I t  happened that Craig was on vacation at  the time, so  he 
gladly accepted McCulloch's invitation. 

S O M E  V A R IA N T S  O F  C R A IG ' S  L A W  

Next morning, after a hearty breakfast (McCulloch was an 
excellent host ! ) ,  McCulloch gave Craig the following prob
lems: 

2 1  

Find a number X that produces 7X7X. 

22 

Find a number X that produces the reverse of gX. 
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Find a number X that produces the associate of 8gX. 

"Very clever!"  exclaimed Craig, after he had solved these 
problems. "None of these three problems can be solved by 
the law I gave you yesterday." 

"That's right!" laughed McCulloch. 
"And yet," said Craig, "all three can be solved by a com

mon principle : In the first place, the particular numbers 7, 5 ,  
and 89 are quite arbitrary; given any number A, there is an 
X that produces the repeat of AX, and there is an X that 
produces the reverse of AX, and there is an X that produces 
the associate of AX. There is also an X that produces the re
peat of the reverse of AX, or the reverse of the associate of 
AX-indeed, given any operation number M, and given any 
number A, there must be an X that produces M(AX)-that is, 
the number obtained by applying operation M to the number 
AX." 

Craig, of course, was right : given any operation number M 
and any number A, there must be an X that produces M(AX) . 
Let us call this principle Craig's Second Law. How do you 
prove this law, and, given an operation number M and a 
number A, how, explicitly, do you find an X that produces 
M(AX)? 
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"I just thought of another question," said McCulloch. "For 
� 

any number X, let X represent the reverse of X. Can you find � 
a number X that produces X 67? (That is, is there an X that 
produces the reverse of X followed by 67?) In general, is it 

� 
true that for any number A there is an X that produces X A?" 

"Another question has occurred to me," said McCulloch. "Is � 
there a number X that produces the repeat of X 67? More 
generally, is it true that for any A there is some X that pro

� 
duces the repeat of X A? Still more generally, is it true that 
for any A and any operation number M there must be some X 

� 
that produces M(X A)?" 

Discussion: Craig's Law holds not only for McCulloch's 
second machine but also for his first one-and, indeed, for 
any possible machine that obeys Rules 1 and 2. That is, how
ever we extend McCulloch's first machine by adding new 
rules, the resulting mechanism is still subject to Craig's Law 
(in fact, to both of Craig's laws) . 

Craig's first law is related to a famous result in the theory 
of computable functions known as the Recursion Theorem (or 
sometimes as the Fixed-Point Theorem) .  McCulloch's Rules 1 

and 2 are about the most economical ones I have ever seen 
achieve this result. They have another surprising property 
(related to another famous result in the theory of computable 
functions known as the Double Recursion Theorem),  which 
will be explained in the next chapter.  All this is relevant to 
the subjects of self-reproducing machines and cloning. 
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• S O L U T I O N S . 

1 • "With your present machine, there are infinitely many 
different numbers that will produce themselves," said Craig. 

"Right! " said McCulloch. "How do you prove this?" 
"Well," replied Craig, "let me can a number S an A-num

ber if it has the property that for any numbers X and Y where 
X produces Y, SX produces the associate of Y. Now, before 
you added this new rule, 3 was the only A-number. But with 
your present machine, there are infinitely many A-numbers, 
and for any A-number S, the number S2S must produce itself, 
since S2S produces the associate of S, which is S2S ."  

"How do you know there i s  an infinite amount of  A-num
bers?" asked McCulloch. 

"To begin with," replied Craig, "do you grant that for any 
numbers X and Y, if X produces Y then 44X will also produce 
Y?" 

"Clever observation!"  replied McCulloch. "Of course you 
are right: if X produces Y, then 4X produces the reverse of Y; 
hence 44X must produce the reverse of the reverse of Y, 
which is Y itself." 

"Good," said Craig, "and so if X produces Y, 44X will also 
produce Y, and hence 344X will produce the associate of Y. 
Therefore, 344 is also an A-number.  And since 344 is an A
number, then 3442344 must produce itself! " 

"Very good!" said McCulloch. "So now we have two num
bers-323 and 3442344-which produce themselves. How 
does this give us an infinite supply of such numbers?" 

"Obviously," said Craig, "if S is an A-number, so is S44, 
because for any numbers X and Y, if X produces Y, then 44X 
also produces Y, and so S44X produces the associate of Y, 
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since S is an A-number. So 3 is an A-number; hence so is 344 ;  
hence also 34444, and, in  general, 3 followed by any even 
number of 4's is an A-number. So 323 produces itself; so does 
3442344; so does 34444234444, and so forth. And thus we 
have infinitely many solutions. 

"Incidentally," added Craig, "these are not the only solu
tions; the numbers 443 and 44443 are also A-numbers-in
deed, any even number of 4'S followed by 3 followed by an 
even number of 4'S, such as 4434444 is an A-number, and so 
for every such number S, S2S produces itself. " 

2 • 43243 is one solution: Since 243 produces 43, then 3243 
produces the associate of 43. Therefore, 43243 must produce 
the reverse of the associate of 43-in other words, the reverse 
of 43243 (since 43243 is the associate of 43) . So 43243 pro
duces its own reverse. 

At this point the reader may well be wondering how the 
number 43243 was found. Was it by a comparative-lengths 
argument? No, comparative-lengths arguments are quite un
wieldy for proving things about this present machine. The 
solution was found by Craig's Law, as we shall see later in 
this chapter. 

3 • One solution is 3432343. We leave it to the reader to 
calculate the number produced by 3432343, and he will see 
that it is indeed the associate of the reverse of 3432343. (This 
solution was also found by using Craig's Law.) 

4 • 53253 works. (Craig's Law is again responsible for the 
answer.) 

5 • 4532453 is one solution. 

6 • 5432543 is another solution. 
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7 • Obvious, that is, once we know that some number pro
duces itself. If X produces X, then of course 5X produces the 
repeat of X. So, for example, 5323 produces the repeat of 323. 

8 • 5332533 is a solution. (Craig's Law again.) 

9 • 3532353 is a solution; it was also found by Craig's Law. (I 
hope 1 am working up the reader's appetite to learn Craig's 
Law!)  

10 • 5 (5) = 55· (Because 5 (5) is  the repeat of 5· )  So we take 
5 for M and also 5 for X. (I never said that M and X must be 
different! )  

1 1  • 4 (4) = 4 ·  (Since 4 (4) is  the reverse of 4, which is 4 · )  
And so M = 4 is  one solution. (Actually, any string of 4's 
would work.) 

12 • Try M = 3, and X = 2.  (3 (2) = 222.) 

13 • 4 (6) = 6, and 6 = 4 + 2, so 4 (6) = 4 + 2 .  So M = 4 and 
X = 2. 

14 • M = 55, X = 55 is a solution. 

15 • M = 4, N = 44 is a solution. 

16 • M = 5, N = 55 is a solution. 

17 • M = 5, N = 4 is a solution. 

18 • M = 3, N = 5 is a solution. 

19 • M = 54, N = 45 is a solution. 
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20 • Let M be any operation number. We know (Fact 1) that 
for any numbers Y and Z, if Y produces Z, then MY produces 
M(Z) . Therefore (taking MY for Z) , if Y produces MY, then 
MY must produce M(MY) .  Thus, taking X for MY, the num
ber X will produce M(X) ! So the problem boils down to find
ing some Y that produces MY. But this problem was solved in 
the last chapter (by McCulloch's Law)-namely, take 32M3 
for Y! And so for X, we take M32M3, and X will produce 
M(X) . 

Let us double-check: Let X = M32M3. Since 2M3 pro
duces M3, then 32M3 produces M32M3 (by Rule 2) , and 
hence M32M3 produces M(M32M3) ; thus X produces M(X) , 
where X is M32M3. 

To consider some applications : To find an X that produces 
the repeat of X, we take 5 for M, and so the solution (or 
rather one solution) is 53253. To find an X that produces its 
own reverse, we take 4 for M, and X is then 43243. To find an 
X that produces the associate of the reverse of X, we take 34 
for M, and one solution is 3432343 .  

For McCulloch's first problem-finding an X that pro
duces the repeat of the reverse of X's associate-we take 543 
for M (5 for repeat, 4 for reverse, and 3 for associate), and the 
solution is 543325433. (The reader can verify directly that 
543325433 produces the repeat of the reverse of the associate 
of 543325433.) For McCulloch's second problem-finding an 
X that produces the associate of the repeat of the reverse of 
X-we take 354 for M and get the solution 354323543. 

Craig's Law is really marvelous! 

21,  22, 23, 24 • Problems 21 ,  22, and 23 are all special cases 
of Problem 24 ; so let us first do Problem 24. 

We are given an operation number M and an arbitrary 
number A, and we wish to find an X that produces M(AX) . 
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The trick now is to find some Y that does not produce MY but 
that does produce AMY: Let's take 32AM3 for Y. Since Y pro
duces AMY, then, by Fact 1, MY must produce M(AMY) . 
Thus, with MY taken for X, X produces M(AX) . Since we 
took 32AM3 for Y, our X is then M32AM3. And so M32AM3 
is our desired solution. 

To apply this to Problem 21 ,  we first notice that 7X7X is 
simply the repeat of 7X, and so we want an X that produces 
the repeat of 7X-the repeat of AX, with A being 7. So A is 7, 
and we obviously take 5 for M (since 5 represents the repeti
tion operation) , and so the solution is 532753. (The reader can 
verify directly that 532753 does indeed produce the repeat of 
7532753.) For Problem 22, A is 9, and we take 4 for M, and 
the solution is 432943. For Problem 23, A is 89, and we take 3 
for M,  so the solution is 3328933. 

25 • Yes, for any Number A there is an X that produces � � 
X A-namely, 432A 43. (For this particular problem in .p= 
which A is 67, A is 76, and so the solution is 4327643.) 

26 • For the most general case, the trick is to realize that +- +- +- +-
X A  is the reverse of A X, and so M(X A) = M4(A X) . By +
Craig's Second Law, an X that produces M4(A X) is +-
M432A M43, so this is a solution. In particular, taking 5 for M +-
and 67 for A, an X that produces the repeat of X 67 is 
543276543 (as the reader can verify directly) . 
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Fergusson's L aws 

And now we come to a further interesting development con
cerning McCulloch's machines. About two weeks after the 
last episode, McCulloch received the following letter from 
Craig: 

My dear McCulloch: 

I am greatly intrigued by your number machines and 
so is my friend Malcolm Fergusson. Do you by any 
chance know Fergusson? He is actively engaged in re
search in pure logic and has himself constructed several 
logic machines. His interests, however, extend far and 
wide; for example, he is very interested in that variety of 
chess problems known as retrograde analysis. He also 
takes a keen interest in pure combinatory problems
the kind your machines so ably provide. I visited him 
last week and showed him an your problems, and he was 
most intrigued. I met him again three days later, and he 
made some remark to the effect that he suspected that 
both of your machines have some interesting additional 
properties which even the inventor did not realize ! He 
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was a bit vague about all this and said that he wanted more 
time to think the matter over. 

Fergusson is coming to dine with me next Friday evening. 
Why don't you join us? I'm sure you will have much in com
mon, and it might be very interesting to find out what he has 
in mind concerning your machines. 

Hoping to see you then, 1 remain 
Sincerely yours, 

L. Craig 

McCulloch promptly replied: 

Dear Craig: 

No, 1 have not met Malcolm Fergusson, but I have 
heard a good deal about him through mutual friends. 
Wasn't he a student of the eminent logician Gottlob 
Frege? I understand he is working on some ideas that are 
basic to the entire foundation of mathematics, and I cer
tainly welcome this opportunity to meet him. Needless 
to say, I am very curious as to what he has in mind con
cerning my machines. 1 thank you for your invitation, 
which I happily accept. 

<> <> <> 

Sincerely, 

N. McCulloch 

The two guests arrived. After an excellent dinner (prepared 
by Craig's landlady, Mrs. Hoffman) , the mathematical con
versation began. 

"I understand that you have constructed some logic ma- I. 
chines," said McCulloch. "I would like to know more about 
them. Can you explain them to me?" 
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"Ah, that's a long story," replied Fergusson, "and I still 
haven't solved a basic question concerning their operation. 
Why don't you and Craig visit my workshop sometime? Then 
I can tell you the whole story. This evening, however, I 
would prefer to talk about your machines. As I told Craig a 
few days ago, they have certain properties of which I suspect 
that even you are unaware. "  

"What are these properties?" asked McCulloch. 

1 

"Wen," replied Fergusson, "let's start with a concrete exam
ple employing your second machine : There are numbers X 
and Y such that X produces the reverse of Y and Y produces 
the repeat of X. Can you find them?" 

Craig and McCulloch were enormously intrigued by this 
problem, and immediately set to work trying to solve it. Nei
ther one succeeded. The problem is of course solvable, and 
the ambitious reader might care to try his hand at it. There is 
a basic underlying principle involved (which will be ex
plained in this chapter) , and once the reader knows it, he will 
be amused at how simple the matter really is. 

2 

"I am totally mystified," said Craig, after Fergusson showed 
them the solution. "I see that your solution works, but how 
did you ever find it? Did you just stumble on these numbers X 
and Y by accident, or did you have some rational plan for 
finding them? To me, it seems like a conjuring trick!"  

"Yes," said McCulloch, "it's like pulling a rabbit out of  a 
hat !"  
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"Ah, yes," laughed Fergusson, who was thoroughly enjoy
ing the mystification, "only it seems I pulled two rabbits out 
of a hat, each of which had a curious effect on the other."  

"That's certainly true! "  replied Craig. "Only I would like 
to know how you knew which rabbits to pull ! "  

"Good question, good question! "  replied Fergusson, more 
jubilant than ever. "Here-let's try another :  Find two num
bers X and Y such that X produces the repeat of Y and Y pro
duces the reverse of the associate of X." 

"Oh, no !"  cried McCulloch. 
"Just a moment," said Craig. "I think I'm beginning to get 

an idea: Do you mean to tell us, Fergusson, that for any two 
operations that the machine can perform-given any two op
eration numbers M and N-there must exist numbers X and 
Y such that X produces M(Y) and Y produces N(X)?" 

"Precisely !"  exclaimed Fergusson, "and so, for example, 
we can find numbers X and Y such that X produces the dou
ble associate of Y and Y produces the repeat of the reverse of 
X--or any other combination you can name."  

"Now, that's remarkable ! "  cried McCulloch. "These last 
few days I have been trying to construct a machine with just 
this property; I had no idea that I already had one !"  

"You most assuredly do," rejoined Fergusson. 
"How do you prove this?" asked McCulloch. 
"Well, let me build up to the proof gradually," replied 

Fergusson. "The heart of the matter really lies in your Rules 
1 and 2. So let me first make some observations about your 
first machine-the one using just those rules. We'll start with 
a simple problem: Using just Rules 1 and 2, can you find two 
distinct numbers X and Y such that X produces Y and Y pro- , 
duces X?" 

Both Craig and McCulloch promptly set to work on this 
problem. 
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"Oh, of course ! "  said Craig, with a chuckle. "It obviously 
follows from something McCulloch showed me some weeks 
ago ."  

Can you find such an X and Y? 

3 

"And now," said Fergusson, "for any number A, there are 
numbers X and Y such that X produces Y and Y produces AX. 
Given an A, can you see how to find such an X and Y? For 
example, can you find numbers X and Y such that X produces 
Y and Y produces 7X?" 

"Are we still working with just Rules 1 and 2, or can we 
use Rules 3 and 4?" asked Craig. 

"You only need Rules 1 and 2, " replied Fergusson. 
Craig and McCulloch went to work on the problem. 
' 'I've got a solution!" said Craig. 

4 

"That's interesting," said McCulloch, after Craig showed his 
solution. "I found a different solution! "  

There is indeed a second solution. Can you find it? 

5 

"And now," said Fergusson, "we come to a really vital prop
erty: From just Rules 1 and 2, it follows that for any two 
numbers A and E, there exist numbers X and Y such that X 
produces AY and Y produces BX. For example, there exist 
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numbers X and Y such that X produces 7Y and Y produces 
8X. Can you find them?" 

6 

"It easily follows," said Fergusson, "from the last problem
or perhaps even more simply from Craig's Second Law-that 
for any operation numbers M and N there must exist X and Y 
such that X produces M(Y) and Y produces N(X) . This holds 
not only for your present machine but for any machine 
whose rules include at least Rules 1 and 2. With your present 
machine, for example, there are numbers X and Y such that X 
produces the reverse of Y and Y produces the associate of X. 
Can you find them?" 

7 

"That's extremely interesting,"  said McCulloch to Fergusson 
after he and Craig had solved the last problem, "and now the 
following question occurs to me : Does my machine obey a 
'double' analogue of Craig's Second Law? That is, given two 
operation numbers M and N and two numbers A and B, do 
there necessarily exist numbers X and Y such that X produces 
M(AY) and Y produces N(BX)?" 

"Oh, yes," replied Fergusson. "For example, there are 
numbers X and Y such that X produces the repeat of 7Y and Y 
produces the reverse of 8gX." 

Can you find such numbers? 
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8 

"I've thought of another question," said Craig. "Given an op
eration number M and a number B, is there necessarily an X 
and a Y such that X produces M(Y) and Y produces BX? For 
example, are there numbers X and Y such that X produces 
the associate of Y and Y produces 78X?" 

Are there? 

9 

"As a matter of fact," said Fergusson, "many other combina
tions are possible. Given any operation numbers M and N 
and any numbers A and B, you can find numbers X and Y that 
fulfil any of the following conditions: 

(a) X produces M(AY) and Y produces N(X) . 
(b) X produces M(AY) and Y produces BX. 
(c) X produces M(Y) and Y produces X. 
(d) X produces M(AY) and Y produces X. 
How do you prove these facts?" 

10 • Tripli cates and Beyond 

"Well, I imagine we have combed through just about all the 
possibilities," said Craig. 

"Not really," replied Fergusson. "What I have shown you 
so far is only the beginning. Did you know, for example, that 
there are numbers X, Y, and Z such that X produces the re
verse of Y, Y produces the repeat of Z, and Z produces the as
sociate of X?" 

"Oh, no! "  exclaimed McCulloch. 
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"Oh, yes," rejoined Fergusson. "Given any three operation 
numbers M, N, and P, there must be numbers X, Y, and Z 
such that X produces MOO, Y produces N(Z) , and Z produces 
P(X) ." 

Can the reader see how to prove this? In particular, what 
numbers X, Y, and Z are such that X produces the reverse of 
Y, Y produces the repeat of Z, and Z produces the associate 
of X? 

"Of course," said Fergusson, after Craig and McCulloch 
had solved the problem. "All sorts of variants of this 'triple' 
law are possible. For example, given any three operation 
numbers M, N, and P and any three numbers A, B, and C, 
there are numbers X, Y, and Z such that X produces M(AY), Y 
produces N(BZ) , and Z produces P(CX) . This also holds if you 
leave out any one or two of the numbers A, B, and C.  Also, 
we can find numbers X, Y, and Z such that X produces AY, Y 
produces M(Z), and Z produces N(EX)-all sorts of variants 
are possible. But these you can work out at your leisure. 

"Also," he continued, "the same idea works with four or 
more operation numbers. For example, we could find num
bers X, Y, Z, and W such that X produces 78Y, Y produces the 
repeat of Z, Z produces the reverse of W, and W produces 
the associate of 62X. The possibilities are really endless. It all 
stems from the surprising power inherent in Rules 1 and 2 ." 

• S O L U T I O N S . 

1. • One solution is to take X = 4325243, Y = 524325243. 
Since 25243 produces 5243, then 325243 produces the associ-
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ate of 5243, which is 524325243, which is Y. Since 325243 
produces Y, then 4325243 produces the reverse of Y, but 
4325243 is X. Thus X produces the reverse of Y. Also, Y ob
viously produces the repeat of X (because Y is 52X, and since 
2X produces X, 52X produces the repeat of X) . Thus X pro
duces the reverse of Y and Y produces the repeat of X. 

2 • Craig recalled McCulloch's Law: that for any number A 
there is some number X (namely, 32A3) that produces AX. In 
particular, if we take 2 for A, there is a number X (namely, 
3223) that produces 2X. And, of course, 2X in turn produces 
X. So 3223 and 23223 are one pair of numbers that works; 
3223 produces 23223 and 23223 produces 3223. 

3 • Craig solved the problem in the following manner: He 
reasoned that all that was necessary was to find some X that 
produces 27X. Then, if we let Y = 27X, X produces Y and Y 
produces 7X, Also, he found that there is an X that produces 
27X-namely, 32273. And so Craig's solution was X = 32273;  
Y = 2732273. 

Of course, this works not only for the particular number 
7 but for any number A: If we let X = 322A3 and 
Y = 2A322A3, X produces Y and Y produces AX. 

4 • McCulloch, on the other hand, went about the problem 
in the following way: He reasoned that all that was necessary 
was to find some Y that produces 72Y. Then, if we let X 
be 2Y, X produces Y and Y produces 7X. We know how to 
find such a Y: Take Y = 32723. So McCulloch's solution was 
X = 232723; Y = 32723. 

5 • All that is necessary is to find an X that produces A2BX. 
Then, if we let Y = 2BX, X produces AY and Y produces BX. 
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An X that produces AzBX is 3zAzB3. And so a solution .is 
X = 3zAzB3, Y = zB3zAzB3. (For the special case A = 7, B 
= 8, the solution is X = 3Z7Z83, Y = z83Z7z83.) 

6 • Let us first solve this problem using Craig's Second Law, 
which, we recall, says that for any operation number M and 
any number A, there is a number X (namely, M3ZAM3) that 
produces M(AX) . Now, take any two operation numbers M 
and N. Then by Craig's Second Law (taking Nz for A), there 
is a number X (namely, M3zNzM3) that produces M(NzX) . 
And, of course, NzX produces N(X) . So, if we let Y be NzX, 
X produces M(Y) and Y produces N(X) . Thus, a solution is 
X = M3zNzM3 and Y = NzM3ZNzM3. (For the particular 
problem suggested by Fergusson, we take 4 for M and 3 for 
N, and the solution is X = 43Z3Z43, Y = 3z43z3z43. The 
reader can check directly that X produces the reverse of Y 
and Y produces the associate of X-the second half is particu
larly obvious) . 

We could have also gone about the problem in the follow
ing way: By the solution to Problem 5, we know that there 
are numbers Z and W such that Z produces NW and W pro
duces MZ (namely, Z = 3zNzM3, W = zM3ZNzM3) . Then, 
by Fact 1 of the last chapter, MZ produces M(NW) and NW 
produces N(MZ) ;  so if we let X be MZ and Y be NW, X pro
duces M(Y) and Y produces N(X) . We thus get the solution 
X = M3zNzM3, Y = NzM3zNzM3. 

7 . ,  We now need an X that produces M(ANzBX) ; such an X 
is M3zANzBM3, by Craig's Second Law. Then take NzBX 
for Y. Then X produces M(AY), and Y (which is NzBX) ob
viously produces N(BX) . So the general solution (or at least 
one such) is X = M3ZANzBM3, Y = NzBM3zANzBM3. For 
the specific problem given here, we obviously take 5 for M, 4 
for N, 7 for A, 89 for B. 
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8 • By Craig's Second Law, there i s  an X that produces 
M(zBX)-namely, X = M322BM3. Then let Y = 2BX. So 
X produces M(Y) and Y produces BX. For the specific prob
lem here, we take 3 for M and 78 for B, getting the solution 
X = 332Z 7833, Y = 27833227833. 

9 • (a) Take an X that produces M(AN2X) an� take Y to be 
NzX. (We can take X to be M32AN23; Y = NzM32AN23.) 
Then X produces M(AY) and Y produces N(X) . 

(b) Now take an X that produces M(A2BX) and take Y to be 
2BX. (So now a solution is X = M3zA2B3; Y = zBM32A2B3.) 

(c) If X produces M(Y) , and Y = 2X, we have a solution, so 
take X = M3z2M3; Y = zM322M3. 

(d) If X produces M(AY) and Y = 2X, we have a solution, so 
take X = M32AzM3 and Y = zM32AzM3. 

10 • By Craig's Second Law, there is an X that produces 
M(N2P2X)-namely, X = M32N2P2M3. Let Y = N2P2X, so 
X produces M(Y) . Let Z = PzX, so Y = N2Z; hence Y pro
duces N(Z) . And Z produces P(X) . 

And so the solution is explicitly X = M32NzPzM3, 
Y = N2P2M32NzP2M3, Z = P2M32N2P2M3. 

For the particular problem, the solution is X = 432523243, 
Y = 52324232523243 and Z = 32432523243. 

The reader can directly compute that X produces the re
verse of Y, Y produces the repeat of Z, and Z produces the as
sociate of X. 

Incidentally, given any three numbers A, B, and C, we can 
find numbers U, V, and W such that U produces A V, V 
produces BW, and W produces CU: Just take a U that pro
duces AzB2CU (if we use the recipe of Craig's Second Law, 
U = 32A2BzC3) . Then let V = ZB2CU and W = zCU. Then 
U produces A V, V produces BW, and W produces CU. If now 
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A, B, and C are operation numbers, take X = A V, Y = BW, 
and Z = CU, and X produces A(Y) , Y produces B(Z) , and Z 
produces C(X) , and so we have an alternative method of 
solving the problem. 
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Interlude: 

Let's Gener alize ! 

Two days after the last episode, Craig was suddenly and quite 
unexpectedly sent by Scotland Yard over to Norway on a case 
which, though interesting, need not concern us. While he is 
gone, I will take the opportunity to offer you something of 
my own thoughts about McCulloch's number machines. The 
reader who is very anxious to find the solution to the Monte 
Carlo lock puzzle may defer this chapter till later if he 
wishes. 

Mathematicians are very fond of generalizing! It is typical 
for one mathematician X to prove a theorem, and six months 
after the theorem is published, for mathematician Y to come 
along and say to himself, "Aha, a very nice theorem X has 
proved, but I can prove something even more general! "  So he 
publishes a paper titled "A Generalization of X's Theorem."  
Or Y might perhaps be  a little more foxy and do the follow
ing: he first privately generalizes X's theorem, and then he 
obtains a special case of his own generalization, and this spe
cial case appears so different from X's original theorem that Y 
is able to publish it as a new theorem. Then, of course, an
other mathematician, Z, comes along who is haunted by the 
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feeling that somewhere there lies something of an important 
nature common to both X's theorem and Y's theorem, and 
after much labor, he finds a common principle. Z then pub
lishes a paper in which he states and proves this new general 
principle, and adds: "Both X's theorem and Y's theorem can 
be obtained as special cases of my theorem by the following 
arguments . . .  , "  

Well, I am no exception, and so  I wish first to  point out 
some features of McCulloch's machines that I doubt either 
McCulloch, Craig, or Fergusson realized, and then I would 
like to make a few generalizations. 

The first thing that struck me when I reviewed the discus
sion of McCulloch's second machine was that once Rule 4 
(the repetition rule) is introduced, we no longer need Rule 2 

(the associate rule) to obtain laws like Craig's and Fergus� 
son's ! Indeed, consider a machine which uses only Rules 1 
and 4 :  For such a machine we can find a number X that pro
duces itself; we can find one that produces its own repeat; 
given any A, we can find a number X that produces AX; we 
can find an X that produces the repeat of AX or the repeat of 
the repeat of AX. Also, still supposing Rule 2 has been de
leted from McCulloch's machine, we can find an X that pro
duces its own reverse or an X that produces the repeat of its 
reverse or an X that produces the reverse of AX or an X that 
produces the repeat of the reverse of AX. Also, suppose we 
consider a machine that obeys McCulloch's Rules 1, 2, and 4 
(leaving out Rule 3, the reversal rule) . There are now two 
different ways to construct a number that produces its own 
associate; there are two ways to construct a number that pro
duces its own repeat; two ways to construct a number that 
produces the associate of its repeat or the repeat of its associ
ate. 

Finally, given any machine satisfying at least Rule 1 and 
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Rule 4, Craig's laws and Fergusson's laws all hold. And so we 
could have given alternative solutions to most of the prob
lems of the last two chapters, using Rule 4 instead of Rule 2. 
(Can the reader see how all this can be done? If not, it will all 
be explained below.) 

I could say much more, but to make a long business short, I 
will summarize my main observations in the form of three 
facts: 

Fact 1: Just as any machine obeying Rules 1 and 2 also 
obeys McCulloch's Law (that for any A there is some X 
which produces AX), so does any machine obeying Rules 1 
and + 

Fact 2: Any machine obeying McCulloch's Law also obeys 
Craig's two laws. 

Fact 3: Any machine obeying both Craig's Second Law and 
Rule 1 must also obey all of Fergusson's laws. 

Can the reader see how to prove all this? 

• S O L U T I O N S . 

Let us first consider any machine obeying Rules 1 and 4 :  For 
any X, 52X produces XX; hence if we take 52 for X, we see 
that 5252 produces 5252. So we have a number that produces 
itself. Also, 552552 produces its own repeat. Also, for any A, 
to find an X that produces AX, take X to be 52AS2 (it pro
duces the repeat of A52, which is A52A52, which is AX) . This 
proves Fact 1 . (If we want an X that produces the repeat of 
AX, take 552A552 for X.) 

Now, let us consider a machine obeying McCulloch's Rules 
1, 3, and 4. A number that produces its own reverse is 452452 
(it produces the reverse of the repeat of 452; in other words, 
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the reverse of 452452) . (Compare this with the former solu
tion 43243.) A number that produces the repeat of its own 
reverse is 54525452. (Compare with the former solution 
5432543.) 

Now, consider a machine obeying Rules 1 ,  2, and 4 - We 
know that 33233 produces its own associate, but so does 
352352. As for an X that produces its own repeat, we already 
have the two solutions 35235 and 552552 . As for an X that 
produces the associate of its repeat, one solution is 353235$ 
another is 35523552. As for a number that produces the re
peat of its associate, one solution is 5332533, and another is 
53525352. 

Now, consider an arbitrary machine obeying at least Rule 
1 and Rule 4 of McCulloch's machines. Given an operation 
number M, an X that produces M(X) is M5zM5z. (Compare 
this with the former solution M32M3, using Rule 2 instead of 
Rule +) And given an operation number M and a number A, 
an X that produces M(AX) is MS2AM52. (Compare this with 
the former solution M32AM3.) This shows that from Rules 1 
and 4 we can get both of Craig's laws. However, I have stated 
(Fact 2) the more general proposition that McCulloch's Law 
alone is enough to yield Craig's laws; this can be proved in 
the manner of Chapter lo--namely, given an operation num
ber M, there is some Y that produces MY, and hence MY pro
duces M(MY) ;  hence X produces M(X) , where X = MY. And 
for any A, if there is some Y that produes AMY, then MY pro
duces M (AMY), and so X produces M(AX) for X = MY. 

As for Fact 3, it can be proved just as in the last chapter. 
(For example, given operation numbers M and N, if Craig's 
Second Law holds, there is some X that produces M(N2X) , 
and if we take N2X for Y, X produces M(Y) and Y produces 
N(X) .) 



The Key 

Craig's affair in Norway took less time than expected, and he 
returned home exactly three weeks from the day he departed. 
When he got to his house, he found a note from McCulloch: 

Dear Craig: 

If, by any chance, you get back by Friday, May 12, I 
would very much like to have you come for dinner. 1 
have invited Fergusson. 

Best regards, 

Norman McCulloch 

"Excellent! "  said Craig to himself. "I returned just in 
timel "  

When Craig arrived at McCulloch's, Fergusson had al
ready been there some fifteen minutes.  

"Wen, well, welcome back!" said McCulloch. 
"While you were gone," said Fergusson, "McCulloch in

vented a new number machine !"  
"Oh?" replied Craig. 
"I didn't invent it all by myself," said McCulloch. "Fer-
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gusson was partly responsible. But this machine is extremely 
interesting; it has the following four rules : 

M-I : For any number X, .zX.z produces X. 
M-II : If X produces Y, then 6X produces .zY. � 

M-III : If X produces Y, then 4X produces Y (as with the last 
machine) . 

M-IV: If X produces Y, then SX produces YY (as with the last 
machine) . 

"This machine,"  said McCulloch, "has all the pretty prop
erties of my last machine-it obeys your two laws and also 
Fergusson's double analogues. "  

Craig studied these rules for a while with unusual inten
sity. 

"I can't even get off the ground," he said at last. "I can't 
even find a number that produces itself. Are there any?" 

"Oh, yes," replied McCulloch. "Though they're much 
more difficult to find than they were with my last machine.  In 
fact, I couldn't solve this problem, although Fergusson did. 
The shortest number we found that produces itself has ten 
digits ."  

Craig again became absorbed in thought. "Surely, the first 
two rules are not sufficient to yield such a number, are they?" 

"Certainly not !"  replied McCulloch. "One needs all four 
rules to get such a number. "  

"Remarkable ! "  said Craig, who then went off once more 
into a deep study. 

"Good gracious ! "  he suddenly exclaimed, virtually leaping 
out of his chair. "Why, this solves the lock puzzle! "  

"What ever are you talking about?" asked Fergusson. 
"Oh, I'm sorry !" said Craig, who then told them of the en

tire Monte CarlO' affair. 
"I trust you will keep this confidential," concluded Craig, 

"and now, McCulloch, if you will show me a number that 
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produces itself, I can then immediately find a combination 
that will open the lock." 

So there are three puzzles for the reader: 
(1) What number X produces itself in this latest machine? 
(2) What combination will open the lock? 
(3) How are the first two questions related? 

E P I L O G U E  

Early the next morning, Craig dispatched a trusted messen
ger to deliver the combination to Martinez in Monte Carlo. 
The messenger arrived in time, and the safe was opened 
without incident. 

True to Martinez's word, the board of directors sent Craig 
a handsome reward, which Craig insisted on sharing with 
McCulloch and Fergusson. To celebrate, the three friends 
spent a delightful evening at the Lion's Inn. 

"Ah, yes," said Craig, after a glass of fine sherry, "this has 
been as interesting a case as has ever come my way! And isn't 
it remarkable that these number machines-invented purely 
out of intellectual curiosity-should have turned out to have 
such an unexpected practical application?" 

• S O L U T I O N S .  

Let me first say a little more about the Monte Carlo lock 
puzzle. 

In Farkus's last condition, nothing was said that required y 

to be a different combination from x. And so, taking x and y 
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to be the same, the condition reads: "If x is specially related 
to x, then if x jams the lock, x is neutral, and if x is neutral, 
then x jams the lock." Now, it is impossible that x can both 
jam the lock and be neutral; hence if x is specially related to 
x, then x can neither jam the lock nor be neutral; hence it 
must open the lock! So, if we can find a combination x that is 
specially related to itself, then such an x will open the lock. 

Craig, of course, realized this before he came back to Lon
don. But how do you find a combination x that is specially 
related to itself? This is the problem Craig could not solve 
before he had the good fortune of seeing McCulloch's third 
machine. 

As it turns out, the problem of finding a combination that, 
on the basis of Farkus's conditions, can be shown to be spe
cially related to itself, is virtually identical with the problem 
of finding a number that produces itself in McCulloch's latest 
machine. The only essential difference is that the combina
tions are strings of letters, whereas the number machines 
work with strings of digits, but we can easily transform either 
problem into the other by the following simple device : 

To begin with, the only combinations we need consider are 
those using the letters Q,L,V,R (these are obviously the only 
letters that play a significant role) . Now suppose, instead of 
using these letters, we had used the respective digits 2,6,4,5 
(that is, 2 for Q, 6 for L, 4 for V, 5 for R) . To make this easier 
to remember: 

Q L V R 
2 6 4  5 

Now, let us see what Farkus's first four conditions look like 
when written in number notation rather than letter notation. 
(1) For any number X, ZX2 is specially related to X. 
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(2) If X is specially related to Y, then 6X is specially related 
to zY. 

(3) If X is specially related to Y, then 4X is specially related � 
to Y . 

(4) If X is specially related to Y, then SX is specially related 
to YY. 

We at once see that these are exactly the conditions of the 
present number machine, except that the phrase specially re
lated to is used instead of produces. (I could have used the 
term produces instead of specially related to when I pre
sented the conditions in Chapter 8, but I did not want to give 
the reader too much of a hint! )  And so we see how either 
problem can be transformed into the other. 

Let me state this again, and this time more precisely: For 
any combination x of the letters Q,L,V,R let i be the number 
obtained by replacing Q by z, L by 6, V by 4, and R by 3. For 
example, if x is the combination VQRLQ, then x is the num
ber 42562. Let us call i the code number of x. (Incidentally, 
the idea of assigning numbers to expressions originated with 
the logician Kurt Codel and is technically known as GOdel 
numbering. It is of great importance, as we will see in Part 
IV.) 

Now we can precisely state the main point of the last 
paragraph thus : For any combination x and y of the four let
ters Q,L,V,R, if i can be shown to produce y on the basis of 
conditions M-I through M-IV of McCulloch's latest machine, 
then x can be shown to be specially related to y on the basis 
of Farkus's first four conditions-and conversely. 

So, if we can find a number that must produce itself in the 
newest number machine, then it must be the code number of 
a combination that is specially related to itself, and this com
bination will open the lock. 

Now, how do we find a number N that produces itself in 
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this present machine? We first look for a number H such that 
for any numbers X and Y, if X produces Y, then HX produces 
YZYZ. If we can find such an H, then for any number Y, HzYz 
will produce YzYz (because ZY2 produces Y, by M-I) , and 
hence HzHz will produce HzHz, and we will have found our 
desired N. But how do we find such an H? 

The problem boils down to this : Starting with a given 
number Y, how can we wind up with Y z Y z by successively 
applying operations that the present machine can perform? 
Well, we can get YZY2 from Y this way: First reverse Y, 

*- � � 
getting Y ; then put 2 to the left of Y ; getting 2 Y ;  then re-� 
verse zY , getting Yz; then repeat Y2, getting YZY2. These op-
erations are respectively represented by the operation num
bers 4, 6, 4, and 5, and so we take H to be 5464-

Let us check that this H really works: Suppose X produces 
Y; we are to check that 5464X produces YzYz. Well, since X +-' 
produces Y, 4X produces Y (by M-III) ; hence 64X produces -<-
2Y (by M-II) ; hence 464X produces Y2 (by M-IU) ; hence 
5464X produces Y2YZ (by M-IV) . So if X produces Y, then 
HX does indeed produce Y2YZ. 

Now that we have found our H, we accordingly take N to 
be HzHz, so the number 546425464Z produces itself (as the 
reader can verify directly) . 

Now that we know that 5464254642 produces itself, we 
know that it must be the code number of a combination that 
opens the lock This combination is RVLVQRVLVQ. 

Of course, the Monte Carlo lock problem can be solved 
directly, rather than by translating it into a number-machine 
problem, but · I did the latter because, for one thing, it hap
pened historically that this is the way Craig found the solu
tion. For another thing, I felt it would be of interest for the 
reader to see an example of how two mathematical problems 
can have different contents but the same abstract form. 
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To verify directly that RVLVQRVLVQ is specially related 
to itself (and hence opens the lock) , we reason as follows : 
QRVLVQ is specially related to RVLV (by Property Q) ; 
hence VQRVLVQ is specially related to the reverse of RVLV 
(by Property V), which is VLVR. Therefore, LVQRVLVQ is 
specially related to QVLVR (by Property L) , and hence 
VLVQRVLVQ is specially related to the reverse of QVLVR, 
which is RVLVQ. Hence (by Property R) , RVLVQRVLVQ is 
specially related to the repeat of RVLVQ, which is 
RVLVQRVLVQ. And so RVLVQRVLVQ is specially related 
to itself. 
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Fergusson's 

Logic M achine 

Some months after the celebrated solution of the Monte 
Carlo lock mystery, Craig and McCulloch paid a visit to Fer
gusson to learn about his logic machine. It did not take long 
for the conversation to turn to the nature of provability. 

"I must tell you an interesting and revealing incident," 
said Fergusson. "A student was asked on a geometry exami
nation to prove the Pythagorean theorem. He handed in his 
paper, and the Mathematics-Master returned it with a grade 
of zero and the comment, 'This is no proof! ' Later, the lad 
went to the Mathematics-Master and said, 'Sir, how can you 
say that what I handed you is not a proof? You have never 
once in this course defined what a proof is! You have been ad
mirably precise in your definitions of such things as triangles, 
squares, circles, parallelity, perpendicularity, and other geo
metric notions, but never once have you defined exactly what 
you mean by the word 'proof. ' How, then, can you so as
suredly assert that what I have handed you is not a proof? 
How would you prove that it is not a proof?' " 

"Brilliant! "  exclaimed Craig, clapping his hands. "That 
boy will go far. How did the Master respond?" 

"Oh," replied Fergusson, "unfortunately the Master was a 
dry pedantic sort with no sense of humor and no imagination. 
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He took off additional marks on the grounds that the boy was 
being impertinent." 

"How unfortunate ! "  exclaimed Craig in indignation. "Had 
I been the Master, I would have given the boy highest honors 
for such a keen observation! "  

"Of course," replied Fergusson. "So would I .  But you know 
how it is with unfortunately too many teachers; they have no 
creative ability of their own and feel threatened by students 
who can think for themselves."  

"I  must admit," said McCulloch, "that i f  I had been in  the 
Master's place, I also could not have answered the boy's 
question. Of course, I would have complimented him for 
raising the question, but I don't see how I could have an
swered it. Just what is a proof, anyhow? I somehow seem to 
recognize a correct proof when I see one, and I can usually 
spot an invalid argument when I come across one; still, 
if asked for a definition of a proof, I would be sorely 
pressed! "  

"That's the situation with almost all working mathemati
cians,"  replied Fergusson. "More than ninety-nine percent of 
them can recognize a correct proof or spot an invalidity in an 
incorrect proof, even though they cannot define what they 
mean by a proof. One task we logicians are interested in is 
that of analyzing the notion of 'proof-to make it as rigorous 
as any other notion in mathematics." 

"If most mathematicians already know what a proof is, 
even though they can't define one," said Craig, "why is it so 
important that the notion be defined?" 

"There are several reasons,"  replied Fergusson. "Although 
even if there were none, I would like to know the definition 
for its own sake. It has frequently happened in the history of 
mathematics that certain basic notions---for example, conti
nuity-were intuitively apprehended long before they were 
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rigorously defined. Once defined, however, the notion ac
quires a new dimension; facts about it can be established that 
would be exceedingly difficult, if not impossible, to discover 
without a firm criterion of when the notion does or does not 
apply. The notion of 'proof is no exception; it has sometimes 
happened that a proof utilizes a new principle-such as the 
Axiom of Choice-and that controversies arise as to whether 
the principle is legitimate. A precise definition of 'proof pin
points just what mathematical principles are or are not being 
used. 

"For another thing, it becomes particularly critical to have 
a precise notion of 'proof when one wishes to establish that a 
given mathematical statement is not provable from a given 
set of axioms. The situation is analogous to ruler-and-compass 
constructions in Euclidean geometry: to show that a certain 
construction, such as trisecting an angle, squaring a circle, or 
constructing a cube with twice the volume of a given cube, is 
not possible involves a more critical characterization of the 
notion of 'construction' than does a positive result in the form 
that such-and-such a construction is possible with ruler and 
compass. And so it is with provability: to show that a given 
statement is not provable from a given set of axioms requires 
a more critical characterization of the notion of proof than a 
positive result in the form that a given statement is provable 
from the axiom."  

A G O D E L I A N  P U Z Z L E  

"Now," continued Fergusson, "given an axiom system, a 
proof in the system consists of a finite sequence of sentences 
constructed according to very precise rules. It is a simple 
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matter to decide purely mechanically whether a given se
quence of sentences is or is not a proof in the system; indeed, 
it is a simple matter to construct a machine that does this. It 
is an altogether different matter to construct a machine that 
will decide which sentences of an axiom system are provable 
and which ones are not. Whether or not this can be done 
may, I suspect, depend on the axiom system . . . .  

"My current interest is in mechanical theorem-proving
that is, in machines that prove various mathematical truths. 
Here is my latest one," Fergusson said, pointing proudly to 
an extremely odd-looking contraption. 

Craig and McCulloch stood several minutes before the 
machine trying to figure out its functions. 

"Just what does it do?" Craig finally asked. 
"It proves various facts about the positive whole num

bers," replied Fergusson. "I am working in a language that 
contains names of various sets of numbers-specifically, posi
tive integers. There are infinitely many sets of numbers 
nameable in this language. For example, we have a name for / 
the set of even numbers, one for the set of odd numbers, one 
for the set of prime numbers, one for the set of all numbers 
divisible by 3-just about every set that number-theorists are 
interested in has a name in the language. Now, although 
there are infinitely many nameable sets, there are no more 
nameable sets than there are positive integers. And to each 
positive integer n is associated a certain nameable set An" We 
can thus think of all the nameable sets arranged in an infinite 
sequence Av Az, . . .  , An" . . .  (If you like, you can think of a 
book with infinitely many pages, and for each positive in
teger n, the nth page contains a description of a set of posi
tive integers. Then think of the set An as the set described on 
page n of the book.) 

"I employ the mathematical symbol 'E,' which represents 
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the English phrase 'belongs to' or 'is a member of,' and for 
every number x and every number y, we have the sentence 
x E Ay, which is read 'x belongs to the set Ay. '  This is the only 
type of sentence my machine investigates; the function of the 
machine is to try and discover what numbers belong to what 
nameable sets. 

"Now, each sentence x € Ay has a code number-namely, a 
number which, when written in the usual base 10 notation, 
consists of a string of l 'S of length x followed by a string of o's 
of length y .  For example, the code number of the sentence 
3 € Az is 1 1 100; the code number of 1 E As is 100000. For any 
x and y, by x"y I mean the code number of the sentence x € 
Ay; thus, xoy consists of a string of l 'S of length x followed by 
a string of o's of length y. 

"The machine operates in the following manner," contin
ued Fergusson. "Whenever it discovers that a number x be
longs to a set Ay, it then prints out the number xoy-the code 
number of the sentence x E Ay- If the machine prints xoy, 
then I say that the machine has proved the sentence x E Ay. 
And I say that the sentence x E Ay is provable (by the ma
chine) if the machine is capable of printing out the number 
xoy. 

"Now, I know that my machine is always accurate in the 
sense that every sentence provable by the machine is true." 

"Just a moment, " interrupted Craig, "what do you mean 
by true? How does true differ from provable?" 

"Oh," replied Fergusson, "the two concepts are entirely 
different: I call a sentence x E Ay true if x is really a member 
of the set Ay- That is entirely .different from saying that the 
machine is capable of printing out the number xoy. If the 
latter holds, then I say that the sentence x E Ay is provable
that is, by the machine." 

"Oh, now I understand, " said Craig. "In other words, when 
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you say that your machine is accurate-that every sentence 
provable by the machine is a true sentence-what you mean. 
is that the machine never prints out a number x"'Y unless x is 
really a member of the set Ay• Is that correct?" 

"Exactly! " replied Fergusson. 
"Tell me," said Craig, "how do you know that your ma

chine is always accurate?" 
"To answer that," replied Fergusson, "I must tell you all 

the details of the machine. The machine operates on the basis 
of certain axioms about the positive integer; these axioms 
have been programmed into the machine in the form of cer
tain instructions. The axioms are all wen-known mathemati
cal truths. The machine cannot prove any statement that is 
not a logical consequence of the axioms. Since the axioms are 
all true, and any logical consequence of true statements must 
be true, then the machine is incapable of proving a false sen
tence. I can tell you the axioms if you like, and then you can 
see for yourselves that the machine can prove only true sen- .. 
tences. "  

"Before you do that," said McCulloch, " I  would like to  ask
. 

another question. Suppose I am willing temporarily to take 
your word that every sentence provable by the machine is 
true. What about the converse? Is every true sentence of the 
form x E Ay provable by the machine? In other words, is the 
machine capable of proving all true sentences of the form 
x E Ay, or only some?" 

"A most important question," replied Fergusson, "but, 
alas, I don't know the answer! That is precisely the basic 
problem I have been unable to solve ! I have been working on 
it on and off for months but have gotten nowhere. I know for 
sure that the machine can prove every statement x E Ay that 
is a logical consequence of the axioms, but I don't know 
whether I have programmed in enough axioms. The axioms 

174 



F E R G U S S O N ' S L O G I C  M A C H I N E  

in question represent just about the sum total of what mathe
maticians know about the system of positive integers; still, 
there may not be enough to settle completely which numbers 
x belong to which nameable sets Ay. So far, every sentence 
x E Ay that I have examined and found to be true on purely 
mathematical grounds I have found to be a logical conse
quence of the axioms, and so the machine is capable of prov
ing it. But just because I have not yet been able to find a true 
sentence that the machine cannot prove doesn't mean that 
there isn't one; it might be that I just haven't found it. Or, 
then again, it may be that the machine can prove all true 
sentences; but I have not yet been able to prove this fact. I 
just don't knowl "  

T o  make a long story short, at this point Fergusson told 
Craig and McCulloch all the axioms used by the machine, as 
wen as the purely logical rules that enabled it to prove new 
sentences from old ones. Once Craig and McCulloch knew 
these details of the machine's operation, they could see im
mediately that it was indeed accurate-that it did prove only 
true sentences. But this still left unsolved the problem of 
whether the machine could prove all true sentences or only 
some. The three met together several times during the next 
few months and slowly but surely closed in on the problem, 
until they finally solved it. 

I will not burden the reader with aU the details, but will 
mention only those that are relevant to the solution of the 
problem. The turning point in the investigation came when 
the three men worked out three key properties of the ma
chine; these properties sufficed to settle the question. It was, 
I believe, Craig and McCulloch who first brought the three 
properties to light, but it was Fergusson who applied the 
finishing touches. I will tell you what these properties 
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are in a moment; but first, a little preliminary notation. 
For any set A of positive integers, by its complement A is 

meant the set of all positive integers that are not in A. (For 
example, if A is the set of even numbers, then its complement 
A is the set of odd numbers; if A is the set of numbers divisi
ble by 5, then its complement A is the set of numbers that are 
not divisible by 5. )  

For any set A of positive integers, by A" we shall mean the 
set of all positive integers x such that x"x is a member of A. 
Thus, for any number x, to say that x lies in A" is equivalent 
to saying that x"x lies in A. 

Now, here are the three key properties that Craig and 
McCulloch discovered about the machine: 
Property 1: The set A8 is the set of all numbers that the ma

chine is capable of printing. 
Property 2: For each positive integer n, A3•n is the comple

ment of An. (By 3.n we mean 3 times n. ) 
Property 3: For every positive integer n, the set A3•n + 1 is 

the set An" (the set of all numbers x such that x"x 
belong to An) .  

1. 

From Properties 1 ,  2, and 3, it can be rigorously deduced that 
Fergusson's machine is not able to prove an true sentences !  
The problem for the reader i s  to  find a sentence that i s  true 
but not provable by the machine. That is, we are to find num
bers n and m (either the same or different) such that n is in 
fact a member of the set Am' yet the code number n"m of the 
sentence n E Am cannot possibly be printed by the machine. 
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In the solution given for Problem 1 ,  the numbers n and m 

were both less than 100. There is another such solution in 
which n and m are both less than 100 (and again, m might be 
the same as n or different; I'm not telling which) . Can the 
reader find it? 

3 

Without any restriction on the sizes of n and m, how many 
solutions are there? That is, how many sentences are there 
which are true but not provable by Fergusson's machine? 

E P I L O G U E 

Fergusson did not easily give up his aspiration of construct
ing a machine that could prove all arithmetic truths without 
proving any falsehoods, and he constructed many, many 
more logic machines.  '* But for each machine he constructed, 
either he or Craig or McCulloch discovered a true sentence 
that the machine could not prove. And so he finally gave up 
the attempt to construct a purely mechanical device that was 
both accurate and could prove all true arithmetic sentences. 

That Fergusson's heroic attempt failed was not due to any 
lack of ingenuity on his part. We must remember that he 
lived several decades before the discoveries of such logicians 
as Codel, Tarski, Kleene, Turing, Post, Church, and others, to 

• Sorpe of them were quite interesting, and I hope to tell you about them in 
another book. 
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whose work we will soon turn. Had he lived to see what these 
men produced, he would have realized that his failure 
stemmed exclusively from the fact that what he was aUempt- / 
ing was inherently impossible ! And so, with a salute to Fer
gusson, and his colleagues Craig and McCulloch, we shall 
jump ahead three or four decades and take a look at the criti
cal year 1931 .  

• S O L U T I O N S . 

:I. • One solution is that the sentence 75 € A75 is true but not 
provable by the machine. Here is the reason why. 

Suppose the sentence 75 € A75 were false . Then 75 doesn't 
belong to the set A75 . Hence 75 must belong to AZ5 (by Prop
erty 2, which makes A75 the complement of Az5) '  This implies 
(by Property 3) that 75 "' 75 belongs to A8, since 25 = 3.8 + 1 ;  
and hence that 75"' 75 can be printed by the machine; in 
other words, that 75 € A75 is provable by the machine. Thus, 
if the sentence 75 € A75 were false, it would be provable by 
the machine. But we are given that the machine is accurate 
and never proves false sentences. Therefore, the sentence 
75 € A75 cannot be false; it must be true. 

Since the sentence 75 € A75 is true, then 75 does belong to 
the set A75. Hence 75 cannot belong to the set AZ5 (by Prop
erty 2), and hence the number 75 "' 75 cannot belong to A8, 
because if 75 '" 75 did belong to A8, then, by Property 3, 75 
would belong to AZ5' Since 75 "' 75 doesn't belong to A8, then 
the sentences 75 € A75 is not provable by the machine. And so 
the sentence 75 € A75 is true but not provable by the machine. 

2 • Before giving other solutions, let us observe the follow
ing general fact: The key set K is the set of all numbers x such 
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that the sentence x E Ax is not provable by the machine--or 
what is the same thing, the set of all numbers x such that x-x 
cannot be printed by the machine. Now, A75 is this set K, be
cause to say that x belongs to A75 is equivalent to saying that 
x does not belong to Az5, which in turn is equivalent to saying 
that x-x does not belong to As, which is the set of all numbers 
that the machine can print. So A75 = K. But also A73 = K, be
cause to say that a number x belongs to A73 is equivalent 
to saying that x-x belongs to AZ4 (by Property 3, since 
73 = 3.24 + 1) ,  which in turn is equivalent to saying that x-x 

does not belong to As (by Property 2) . Thus, A73 is the set of 
all numbers x such that x-x does not belong to As--or, what is 
the same thing, such that x € � is not provable by the ma
chine. Thus, A73 is the same set as A75, since both are the 
same as the set K. Moreover, given any number n such that 
An = K, the sentence n € An must be true but not provable by 
the machine-this by essentially the same argument as for 
the special case n = 75 (an argument we give in a still more 
general form in the next chapter) . And so 73 € A73 is another 
example of a true sentence whose code number the machine 
cannot print. 

3 • For any n, the set Ag.n must be the same as the set An' 
because Ag.n is the complement of A3•n, and A3•n is the com
plement of �; hence Ag.n is the same set as An' And so �75 is 
the same as the set A75, and so 675 € �75 is another solution. 
Also 2175 € AZ175 is a solution. Indeed, there are infinitely 
many true sentences that Fergusson's machine cannot prove: 
for any n that is 75 times some multiple of 9, or 73 times some 
multiple of 9, the sentence n E � is true but not provable by 
the machine. 
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Prov ability and Truth 

The year 1931 was indeed a great landmark in the history of 
mathematical logic; this was the year in which Kurt Codel 
published his famous Incompleteness Theorem. Codel begins 
his epoch-making paper\\' as follows: 

The development of mathematics in the direction of 
greater precision has led to large areas of it being for
malized, so that proofs can be carried out according to a 
few mechanical rules. The most comprehensive formal 
systems to date are, on the one hand, the Principia 
Mathematica of Whitehead and Russell and, on the 
other, the Zermelo-Fraenkel system of axiomatic set the
ory. Both systems are so extensive that all methods of 
proof used in mathematics today can be formalized in 
them; i .e . ,  can be reduced to a few axioms and rules of 
inference. It would seem reasonable, therefore, to sur
mise that these axioms and rules of inference are suffi
cient to decide all mathematical questions which can be 

� "Uber formal unentscheidbare Siitze der Principia Mathematica und ver
wandter Systeme I" ("On Formally Undecidable Propositions of Principia Math
ematica and Related Systems"), Monatshefte fur Mathematik und Physik 38, 
173-198. 
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formulated in the system concerned. In what follows it 
will be shown that this is not the case, but rather that, in 
both of the cited systems, there exist relatively simple 
problems of the theory of ordinary whole numbers 
which cannot be decided on the basis of the axioms. t 

Codel then goes on to explain that the situation does not 
depend on the special nature of the two systems under con
sideration, but holds for an extensive variety of mathematical 
systems. 

Just what is this "extensive variety" of mathematical sys
tems? Various interpretations have been given, and Codel's 
theorem has accordingly been generalized in several ways. 
Curiously enough, one of the ways that is most direct and 
most easily accessible to the general reader is also the way 
that appears to be the least well known. What makes this 
even more curious is that the way in question is the very one 
indicated by Codel himself in the introductory section of his 
original paper! To which we shall now turn. 

Let us consider an axiom system with the following prop
erties: First of all, we have names for various sets of (positive 
whole) numbers, and we have all these nameable sets ar
ranged in an infinite sequence Al' Az, . . .  , An> . . .  Uust as in 
Fergusson's system of the last chapter) . We shall call a num
ber n an index of a nameable set A if A = An- (Thus, for ex
ample, if the sets Az, AT and A13 all happen to be the same, 
then 2, 7, and 13 are all indices of this set.) As with Fergus
son's system, we have associated with every number x and 
every number y a certain sentence-written x E Ay-which is 
called true if x belongs to Ay and false if x doesn't belong to 
Ay- We no longer assume, however, that the sentences x E Ay 
are the only sentences of the system; there may be others. But 

t Composite translation. 
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every other such sentence is classified as either a true sen
tence or a false one. 

Every sentence of the system is assigned a code number, 
which we will now call its G6del number, and we will let X f> y  

be the Godel number of the sentence x E Ay• (We no longer 
need assume that x .. y consists of a string of l'S of length x fol
lowed by a string of 0' s of length y; this is nothing at all like 
the code numbering that Codel actually used. There are 
many different code numberings that work, and which one 
works most smoothly depends on the particular system under 
consideration. Anyway, for the general theorem we are about 
to prove, nothing about the particular Codel numbering need 
be assumed.) 

Certain sentences are taken as axioms of the system, and 
certain rules are provided that enable one to prove various 
sentences from the axioms. There is, thus, a well-defined 
property of a sentence being provable in the system. It is as
sumed that the system is correct, in the sense that every sen
tence provable in the system is true; hence, in particular, that 
whenever a sentence x E Ay is provable in the system, then x 
really is a member of the set Ay• 

We let P be the set of Codel numbers of all the sentences 
provable in the system. For any set A of numbers, we again 
let A be the complement of A (the set of all numbers not in A) 
and we let A'" be the set of all numbers x such that X"X be
longs to A. We are now interested in systems in which the 
following conditions, G1, G2, and C3, hold: 

C1 :  The set P is nameable in the system. Stated otherwise, 
there is at least one number p such that Ap is the set of Codel 
numbers of the provable sentences. (For Fergusson's system, 
8 was such a number p. ) 

C2: The complement of any set nameable in the system is 
also nameable in the system. Stated otherwise, for any num-
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ber X there is some number x ' such that Ax, is the complement 
of Ax' (For Fergusson's system, 3'x was such a number x'. ) 

G3: For any nameable set A, the set A «I is also nameable in 
the system. Stated otherwise, for any number x there is some 
number x l> such that �. is the set of all numbers n such that 
n"n lies in Ax' (For Fergusson's system, 3'X + 1 was such a 
number x«l .) 

The conditions Fl ,  Fz, and F3 characterizing Fergusson's 
machine are obviously nothing more than special cases of 
conditions Gl,  Cz, and C3. These latter general conditions 
are of considerable importance, because they do hold for a 
wide variety of mathematical systems, including the two sys
tems treated in Codel's paper. That is, it is possible to ar
range all the nameable sets in an infinite sequence Av Az, . . •  , 
An' . . . and to exhibit a particular Codel numbering of 
the sentences such that the conditions Cl, Gz, and C3 do 
hold. Therefore, anything provable about systems satisfying 
the conditions Gl,  Cz, and G3 will apply to many important 
systems. 

We can now state and prove the follOWing abstract form of 
Codel's theorem. 

Theorem G: Given any correct system satisfying condi
tions Gl,  Gz, and C3, there must be a sentence that is true 
but not provable in the system. 

The proof of Theorem C is a straightforward generaliza
tion of the proof that the reader already knows for Fergus
son's system :  We let K be the set of all numbers x such that 
x"x is not in the set P. Since P is nameable (by Cl), so is its 
complement P (by Gz) , and hence so is the set po (by G3) ;  but 
P" is the set K (because P" is the set of all numbers x such 
that xox lies in P, or, what is the same thing, the set of all x 

such that x"x doesn't lie in P) . And so the set K is nameable in 
the system, which means that K = Ak for at least one number 
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k. (For Fergusson's system, 73 was one such number k, and so 
was 75.) Thus, for any number x, the truth of the sentence x E 

Ak is tantamount to the assertion that x.x is not in P, which is 
tantamount to the fact that the sentence x e Ax is not prov
able (in the system) . In particular, if we take k for x, the truth 
of the sentence k E Ak is tantamount to its nonprovability in 
the system, which means that it is either true and not prov
able in the system or false but provable in the system. The 
latter possibility is out, since we are given that the system is 
correct; hence it must be that the form holds--the sentence is 
true but not provable in the system. 

Discussion: In What Is the Name of This Book? I consid
ered the analogous situation of an island on which every in
habitant is either a knight who always tells the truth or a 
knave who always lies. Certain knights were called estab
lished knights and certain knaves were caned established 
knaves. (The knights correspond to true sentences, and the 
established knights correspond to sentences that are not only 
true but provable. ) Now, it is impossible for any inhabitant of 
the island to say, "I am not a knight," because a knight would 
never lie and claim he wasn't a knight, and a knave would 
never truthfully admit to not being a knight. Therefore, no 
inhabitant of the island can claim that he is not a knight. 
However, it is possible for an inhabitant to say, "I am not an 
established knight."  If he says that, no contradiction arises, 
but something interesting follows--namely, that the speaker 
must in fact be a knight but not an established knight. For a 
knave would never make the truthful claim that he is not an 
established knight (for in truth he isn't), and so the speaker 
must be a knight. Since he is a knight, his statement must be 
true; so he is a knight but, as he says, not an established 
knight-just as the sentence k e Ak, which asserts its own 
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nonprovability in the system, must be true but not provable 
in the system. 

G O D E L  S E N T E N C E S  
A N D T A R S KI' S T H E O R E M  

Let us now consider a system satisfying at least conditions 
C2, C3 (for the time being, condition C1 is not relevant) . We 
have defined P to be the set of Codel numbers of the provable 
sentences of the system; let us now define T to be the set of 
Codel numbers of an the true sentences of the system. In the 
year 1933, the logician Alfred Tarski raised and answered the 
following question: Is the set T nameable in the system, or 
not? This question can be answered purely on the basis of 
conditions C2 and C3. I will give the answer shortly, but first 
let's turn to a still more basic question of systems that satisfy 
at least the condition C3. 

Civen any sentence X and any set A of positive whole 
numbers, we shall call X a GOdel sentence for A if either X is 
true and its Codel number lies in A, or X is false and its Codel 
number lies outside A. (Such a sentence can be thought of as 
asserting that its own Codel number lies in A; if the sentence 
is true, then its Codel number really is in Ai if the sentence is 
false, then its Codel number is not in A.) Now, we shall call a 
system G6delian if for every set A nameable in the system 
there is at least one Codel sentence for A. 

The following fact is basic: . 
Theorem C: If a system satisfies condition C3, then it is 

Codelian. 
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1 

Prove Theorem C.  

To take a special case, consider Fergusson's system. Find a 
Code! sentence for the set Aloo' 

3 

Suppose a system is Codelian (without necessarily satisfying 
condition G3) . If the system is correct and satisfies conditions 
Gl and C2, does it necessarily contain a sentence that is true 
but not provable in the system? 

4 

Let T be the set of Godel numbers of the true sentences. Is 
there a Codel sentence for T? Is there a Codel sentence for t, 
the complement of T? 

Now we are in a good position to give the answer to 
Tarski's question. The following is an abstract version of 
Tarski's theorem. 

Theorem T: Civen any system satisfying conditions C2 and 
C3, the set T of Codel numbers of the true sentence is not 
nameable in the system. 

Note: The word definable is sometimes used in place of 
nameable, and Theorem T is sometimes paraphrased as fol
lows: For sufficiently rich systems, truth within the system is 
not definable within the system. 
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5 

Prove Theorem T.  

6 

It is instructive to note that once Theorem T has been 
proved, one can immediately obtain Theorem C as a corol
lary. Can the reader see how? 

A D U A L  F O R M  
O F  G O D E L ' S  A R G U M E N T 

The various systems that have been proved incomplete by 
Codel's argument also have the property that associated with 
each sentence X is a sentence X'  called the negation of X, 
which is true if and only if X is false . A sentence X is called 
disprovable or refutable in the system if its negation X' is 
provable in the system. Assuming the system to be correct, no 
false sentence is provable in the system and no true sentence 
is refutable in the system. 

We have seen that conditions C1, Cz, C3 imply the exis
tence of a Codel sentence C for the set P, and that such a 
sentence C is true but not provable in the system (assuming 
the system is correct) . Since C is true, it can't be refutable in 
the system either (again by the assumption of correctness) . So 
the sentence C is neither provable nor refutable in the sys
tem. (Such a sentence is called undecidable in the system.) 

In a
, 
1960 monograph, "Theory of Formal Systems," I con

sidered a "dual" form of Codel's argument: Instead of a sen-
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tence that asserts its own nonprovability, what about con
structing a sentence that asserts its own refutability? More 
precisely, let R be the set of Godel numbers of the refutable 
sentences. Suppose X is a Godel sentence for R; what is the 
status of X? This idea is carried out in the next problem. 

7 

Let us now consider a correct system that satisfies condition 
G3, but instead of assuming conditions G 1, Gz, we assume 
the following single condition: 

G 1 '; The set R is nameable in the system. 
(Thus we assume that the system is correct and satisfies 

conditions GI ' and G3.) 
(a) Prove that there is a sentence which is neither provable 

nor refutable in the system. 
(b) To take a special case, suppose we are given that A10 is 

the set R and that for any number n, Ason is the set of all x 

such that XlJX is in An (this is a special case of G3) . The prob
lem now is actually to find a sentence that is neither provable 
nor refutable in the system, and to determine whether the 
sentence is true or false. 

Remarks: (1) Godel's method of obtaining an undecidable 
sentence boils down to constructing a Godel sentence for 1'>, 
the complement of P; such a sentence (which can be thought 
of as asserting its own nonprovability) must be true but not 
provable in the system. The "dual" method boils down to 
constructing a Godel sentence for the set R rather than for 
the set 1'>; such a sentence (which can be thought of as assert
ing its own refutability) must be false but not refutable. 
(Since it is false, it is not provable either, hence is undecid
able in the system.) I should remark that the systems treated 
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in Codel's original paper satisfy all four conditions, C1, C2, 
G3, and GI ', so either method can be used for constructing 
undecidable sentences. 

(2) Just as a sentence that asserts its nonprovability is like a 
native of a knight-knave island who claims that he is not an 
established knight, so a sentence that asserts its own 
refutability is like a native of the island who claims that he is 
an established knave; such a native is indeed a knave, but not 
an established one. (I leave the proof of this to the reader.) 

• S O L U T I O N S . 

1. • Suppose the system does satisfy condition C3. Let S be 
any set nameable in the system. Then, by C3, the set S � is 
nameable in the system. So there is some number b such that 
Ab = S � . Now, a number x belongs to S # just in case x�x be
longs to S. So a number x belongs to Ab just in case x�x be
longs to S. In particular, taking b for x, the number b belongs 
to Ab just in case b�b belongs to S. Also, b belongs to Ab if and 
only if the sentence b E Ab is true. So b E Ab is true if and only 
if b�b belongs to S. Also, b�b is the Codel number of the sen
tence b E Ab• And so we see that b E Ab is true if and only if its 
Codel number belongs to S. So if b E Ab is true, its Codel 
number belongs to S; if b E Ab is false, its Codel number does 
not belong to S. Thus, the sentence b E Ab is a Codel sentence 
for S .  

2 • In Fergusson's system, given any number n,  A3on+1 is the 
set Ar; � . And so A301 is the set A100 # . And so we use the result 
of the last problem and take 301 for b. Thus, 301 E A301 is a 
COdel sentence for the set AlOo' More generally, for any num-
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ber n, if we let b = 3·n+ 1,  the sentence b E Ab is a Codel sen
tence for An in Fergusson's system. 

3 • Yes, it does : Suppose the system is Codelian and condi
tions C1 and C2 both hold, and suppose also that the system 
is correct. By C1 the set P is nameable; hence, by C2, P, the 
complement of P, is nameable.  Then, since the system is 
Codelian, there is a Codel sentence X for P. This means that 
X is true if and only if X's Codel number is in P. But to say 
that X's Codei number is in P is to say that it is not in P, 
which is the same thing as saying that X is not provable. 
Thus, a Codel sentence for P is nothing more nor less than a 
sentence that is true if and only if it is not provable in the 
system, and (as we have seen) such a sentence must be true 
but not provable in the system (assuming the system is cor
rect) . 

Indeed, the essence of Codel's argument is the construc
tion of a Codel sentence for the set P. 

4 • Obviously, every sentence X is a Codel sentence for T, 
because if X is true its Codel number is in T, and if X is false 
its Codel number is not in T. Therefore, no sentence can be a 
Codel sentence for t, because it cannot be that either X is 
true and its Codel number is in t, or that X is false and its 
Codel number is not in t. 

It might be instructive for the reader to observe that for 
any number set A and for any sentence X, X is either a Code! 
sentence for A or X is a Codel sentence for A, but never both. 

5 • Let us first consider any system satisfying condition C3. 
By Problem 1 ,  given any set nameable in the system, there is 
a Codel sentence for it. Also, by the last problem, there is no 
Codel sentence for the set t. Therefore, if the system satisfies 
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G3, the set t is not nameable in the system. If the system also 
satisfies condition Gz, then T is not nameable in the system 
either-because if it were, then, by Gz, so would its comple
ment t be nameable, which it isn't. This proves that in a sys
tem satisfying Gz and G3, the set T is not nameable in the 
system. 

In summary: (a) If G3 holds, then t is not nameable ; (b) if 
Gz and G3 both hold, then neither T nor t is nameable in the 
system. 

6 • If we have first proved Theorem T, we can obtain Theo
rem G as follows: 

Suppose we have a correct system satisfying conditions GI, 
Gz, G3. From Gz and G3, using Theorem T, we see that T is 
not nameable in the system. But, by GI, P is nameable in the 
system. Since P is nameable and T is not, then P and T must 
be different sets. However, every number in P is also in T, 
since we are given that the system is correct in that every 
provable sentence is true. Therefore, since T is not the same 
as the set P, there must be at least one number n in T that is 
not in P. Since n is in T, it must be the Godel number of a 
sentence X which is true. But since n is not in P, then X is not 
provable in the system. Thus, X is true but not provable in 
the system.  Thus Theorem G holds. 

7 • We are given conditions GI '  and G3. 
(a) By GI ', the set R is nameable in the system. Then, by 

condition G3, the set R" is nameable in the system. Hence, 
there is some number h such that Ah = R" .  Now, by the defi
nition of R" ,  a number x is in R" if and only if x"x is in R. 
Therefore, for any x, x belongs to Ah if and only if x"x belongs 
to R,. In particular, if we take h for x, h belongs to Ah if and 
only if h"h belongs to R. Now, h belongs to Ah if and only if 
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the sentence h E Ah is true. Also, since h"'h is the Codel num
ber of the sentence h E Ah, then hoh belongs to R if and only if 
the sentence h E Ah is refutable. Therefore, the sentence h E 

Ah is true if and only if it is refutable. This means that the 
sentence is either true and refutable or false and not refut
able. It cannot be true and refutable, since we are given that 
the machine is correct; hence it must be false but not refut
able. Since the sentence is false, it cannot be provable either 
(again, because the system is correct) . Therefore, the sen
tence h E Ah is neither provable nor refutable (and, also, it is 
false) . 

(b) We are now given that A10 is R, and also that for any n, 
As.n is the set An"' .  Therefore, Aso is the set R"' .  And so, by 
Solution (a) , taking 50 for h, the sentence 50 E Aso is neither 
provable nor refutable. Also, the sentence is false .  



M achines 

That Talk About 

Themselves 

We shall now consider Goders argument from a slightly dif
ferent perspective, which puts the central idea in a remark
ably clear light. 

We shall take the four symbols P,N,A, - and consider all 
possible combinations of these symbols. By an expression we 
mean any combination of the symbols. For example, 
P - - NA - P is an expression; so is - PN - - A - P - . Certain 
expressions will be assigned a meaning, and these expressions 
will be called sentences. 

Suppose we have a machine that can print out some ex
pressions but not others. We call an expression printable if 
the machine can print it. We assume that any expression that 
the machine can print will be printed sooner or later. Given 
any expression X, if we wish to express the proposition that X 
is printable, we write P - X. So, for example, P - ANN says 
that ANN is printable (this may be true or false, but that's 
what it says! ) .  If we want to say that X is not printable, we 
write NP - X. (The symbol N is the abbreviation of the word 
not, just as the symbol P represents the word printable. And 
so NP - X is to be read, crudely, as "Not printable X," or, in 
better English, "X is not printable .") 

By the associate of an expression X we mean the expression 
X - X.  We use the symbol A to stand for "the associate of," 
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and so, for any given X, if we wish to state that the associate 
of X is printable we write PA - X (read "printable the associ
ate of X," or in better English, "the associate of X is print
able") . If we wish to say that the associate of X is not print
able, we write NP A - X (read "not printable the associate of 
X," or, in better English, "the associate of X is not print
able") . 

Now, the reader may well wonder why we use the dash as 
a symbol : why don't we simply use PX rather than P - X to 
express the proposition that X is printable? The reason is that 
omission of the dash would create a contextual ambiguity. 
"What, for example, would PAN mean? Would it mean that 
the associate of N is printable or that the expression AN is 
printable? With the use of the dash, no such ambiguity arises. 
If we want to say that the associate of N is printable, we 
write down PA - N; whereas, if we want to say that AN is 
printable, we write down P - AN. Again, suppose we want to 
say that - X is printable; do we write P - X? No, that would 
state that X is printable. To say that - X is printable, we 
must write P - - X. 

Perhaps some more examples might help: P - - says that -
is printable ; PA - - says that - - - (the associate of -) is 
printable ; P - - - - also says that - - - is printable;  
NPA - - P - A says that the associate of - P - A is not print
able ; in other words, that - P - A - - P - A is not printable. 
NP - - P - A - - P - A says the same thing. 

We now define a sentence as any expression of one of the 
four forms P - X, NP - X, PA - X, and NPA - X, where X is 
any expression whatever. We call P - X true if X is printable, 
and false if X is not printable. We call NP - X true if X is not 
printable and false if X is printable. We call P A - X true if 
the associate of X is printable, and false if the associate of X is 
not printable. Finally, we call NA - X true if the associate of 
X is not printable, and false if the associate of X is printable. 
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We have now given a precise definition of truth and falsity 
for sentences of all four types, and from this it follows that, 
for any expression X: 
Law 1 :  P - X i s  true if  and only if  X i s  printable (by the ma-

chine) . 
Law 2 :  P A - X is true if and only if X - X is printable. 
Law 3: NP - X is true if and only if X is not printable. 
Law 4 :  NPA - X is true if and only if X - X is not printable. 

We have here a curious loop l The machine is printing out 
sentences that make assertions about what the machine can 
and cannot print! In this sense, the machine is talking about 
itself (or, more accurately, printing out sentences about it
self) . 

We are now given that the machine is a hundred percent 
accurate-that is, it never prints out any false sentence; it 
prints out only true sentences. This fact has several ramifica
tions: As an example, if it ever prints out P - X, then it must 
also print out X, because, since it prints out P - X, then P - X 
must be true, which means that X is printable, and hence the 
machine must sooner or later print X. 

It follows as well that if the machine should print out 
PA - X, then (since PA - X must be true) , the machine must 
also print out X - X. In addition, if the machine prints out 
NP - X, then it cannot also print P - X, since these two sen
tences can't both be true-the first says that the machine 
doesn't print X, and the second says that the machine does 
print X. 

The following problem puts Codel's idea into as clear a 
light as any problem I can imagine. 

:1 • A Singularly Godelian Challenge 

Find a true sentence that the machine cannot print! 
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2 • A Doubly Godelian Puzzle 

We continue to assume the same conditions--and, in particu
lar, that the machine is accurate. 

There is a sentence X and a sentence Y such that one of the 
sentences X or Y must be true but not printable, but it is im
possible to tell, from the given conditions embodied in Laws 
1 through 4, which one it is. Can you find such an X and Y? 
(Hint : Find sentences X and Y such that X says that Y is 
printable and Y says that X is not printable .  There are two 
different ways of doing this, and both relate to Fergusson's 
laws!) 

3 • A Triply Godelian Problem 

Construct sentences X, Y, and Z such that X says that Y is 
printable, Y says that Z is not printable, and Z says that X is 
printable, and show that at least one of these three sentences 
(though it can't be determined which) must be true but not 
printable by the machine. 

T W O  M A C H I N E S  T H A T  T A L K  
A B O U T T H E M S E L V E S A N D  

A B O U T E A C H  O T H E R  

Let us now add a fifth symbol, R. We thus have the symbols 
P,R,N,A, -, and are now given two machines M l  and Mz, 

each of which prints out various expressions composed of 
these five symbols. We now interpret "P" to mean "printable 
by the first machine," and we interpret "R" to mean "print-
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able by the second machine."  Thus, P - X now means that X 
is printable by the first machine, and R - X means that X 
is printable by the second machine. Also, P A - X means that 
the associate of X is printable by the first machine, RA - X 
that the associate of X is printable by the second machine. 
Also, NP - X, NR - X, NP A - X, NRA - X respectively mean: 
X is not printable by the first machine; X is not printable by 
the second machine; X - X is not printable by the first ma
chine; X - X is not printable by the second machine. By a 
sentence is now meant any expression of one of the eight 
types P - X, R - X, NP - X, NR - X, PA - X, RA - X, 
NP A - X, or NRA - X, and we are given that the first ma
chine prints out only true sentences, and the second machine 
prints out only false sentences. Let us call a sentence prov
able if and only if it is printable by the first machine and re

futable if and only if it is printable by the second machine. 
Therefore, P can be read as "provable" and R can be read as 
"refutable. "  

4 

Find a sentence which is false but not refutable. 

5 

There are sentences X and Y such that one of the two (we 
don't know which) must be either true but not provable or 
false but not refutable, and again we don't know which. This 
can be done in either of two ways, and I accordingly pose two 
problems: 

(a) Find sentences X and Y such that X says that Y is prov
able and Y says that X is refutable. Then show that one of the 
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sentences X or Y (we can't determine which) is either true 
and not provable or false but not refutable. 

(b) Find sentences X and Y such that X says that Y is not 
provable and Y says that X is not refutable. Then show that 
for this X and Y, one of them (we can't determine which) is 
either true and not provable or false and not refutable. 

6 

Now let's try a quadruplicate ! Find sentences X, Y, Z, and W 
such that X says that Y is provable, Y says that Z is refutable, 
Z says that W is refutable, and W says that X is not refutable. 
Show that one of these four sentences must be either true and 
not provable or false and not refutable (though there is no 
way to tell which of the four it is ! ) .  

M c C U L L O C H ' S M A C H I N E  A N D  
G O D E L ' S T H E O R E M  

The reader may have noticed certain similarities of some of 
the preceding problems to certain features of McCulloch's 
first machine. Indeed, this machine can be related to Godel's 
theorem in the following manner: 

7 

Suppose we have a mathematical system with sentences cer
tain ones of which are called true and certain of which are 
called provable. We assume the system is correct--every 
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provable sentence is true. To each number N is assigned a 

sentence that we can Sentence N. Suppose the system satis
fies the following two conditions: 
MCl : For any numbers X and Y, if X produces Y in McCul

loch's first machine, then Sentence 8X is true if and 
only if Sentence Y is provable. (8X, remember, means 8 
followed by X, not 8 times X.) 

MC2 :  For any number X, Sentence gX is true if and only if 
Sentence X is not true. 

Find a number N such that Sentence N is true but not 
provable in the system. 

8 

Suppose that in condition MCl of the last problem, we re
place " McCulloch's first machine" by "McCulloch's third 
machine. "  Now find an N such that Sentence N is true but 
not provable ! 

9 • Paradox ica l? 

Let's return again to Problem 1, but with these differences : 
Instead of using the symbol "P," we will use "B" (for psycho
logical reasons which will appear later) . We define sentence 
as before, only this time using "B" in place of "P." Thus, 
our sentences are now B - X, NB - X, BA - X, and NBA - X. 
Sentences are, as before, classified into two groups
true sentences and false sentences-but we are not told 
which sentences are which. Now, instead of having a 
machine that prints out various sentences, we have a logi
cian present who believes some of the sentences but not 
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others. When we say that the logician doesn't believe a 
sentence, we don't mean that he disbelieves it; we merely 
mean that it is not the case that he believes it; in other words, 
he either believes it false or he has no opinion about it one 
way or the other. Now the symbol "B" stands for "believed 
by the logician," and so we are given that the following four 
conditions hold for any expression X: 
BI:  B - X is  true if and only if  the logician believes X. 
B2: NB - X is  true if  and only if  it  is  not the case that the lo

gician believes X. 
B3: BA - X is  true if  and only if  the logician believes X - X. 
B4: NBA - X is true if and only if it is not the case that the 

logician believes X - X. 
Assuming that the logician is accurate-i.e . ,  that he does 

not believe any false sentence-then we can, of course, find a 
sentence that is true but that the logician does not know to be 
true; namely, NBA - NBA (which says that the logician does 
not believe the associate of NBA, which is NBA - NBA) . 

Now comes something interesting. Suppose we are given 
the following facts about the logician: 

Fact 1: The logician knows logic at least as well as you or I ;  
in fact, we will assume that he is  a perfect logician: given any 
premises, he can deduce all propositions that logically follow. 

Fact 2: The logician knows that condition BI, B2, B3, and 
B4 all hold. 

Fact 3: The logician is always accurate; he doesn't believe 
any false sentences. 

Now, since the logician knows that conditions BI,  B2, B3, 
and B4 all hold, and he can reason as well as you or I ,  what is 
to prevent him from going through the same reasoning pro
cess that we went through to prove that the sentence 
NBA - NBA must be true? It would appear that he can do 
this, and having done it, he will then believe the sentence 
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NBA - NBA. But the moment he believes it, the sentence will 
be falsified, since the sentence says that he doesn't believe it, 
which will make the logician inaccurate after all ! 

So, don't we get a paradox if we assume Facts 1 , 2, and 3? 
The answer is that we don't; there is a deliberate flaw in my 
argument in this last paragraph! Can you find the flaw? 

• S O L U T I O N S . 

1 • For any expression X, the sentence NP A - X says that 
the associate of X is not printable. In particular, NPA - NPA 
says that the associate of NP A is not printable. But the associ
ate of NPA is the very sentence NP A - NP AI Hence, 
NPA - NP A asserts its own nonprintability; in other words, 
the sentence is true if and only if it is not printable. This 
means that either it is true and not printable or it is not true 
but printable. The latter cannot be, since the machine is ac
curate. Hence, it must be the former; the sentence is true but 
not printable by the machine. 

2 • Let X be the sentence P - NPA - P - NPA and Y be the 
sentence NP A - P - NP A. The sentence X (which is P - Y) 
says that Y is printable. The sentence Y (crudely read as "not 
printable the associate of P - NPA") says that the associate of 
P - NP A is not printable .  But the associate of P - NP A is X, 
so Y says that X is not printable. (Incidentally, there is an
other way of constructing such an X and Y: take X to be 
PA - NP - PA, and Y to be NP - PA - NP - PA.) 

We thus have two sentences X and Y such that X says that 
Y is printable and Y says that X is not printable. 

Now, suppose X were printable. Then it would be true, 
which would mean that Y is printable. Then Y would be true, 
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which means that X is not printable. This is a contradiction, 
since X in this case would be both printable and not print
able; hence X cannot be printable. Since X is not printable 
and Y says that X is not printable, then Y must be true. 
Therefore, we know: 

(1) X is not printable; 
(2) Y is true. 
Now, X is either true or it isn't. If X is true, then, by (1) , X 

is true but not printable. If X is false, then Y is not printable, 
since X says that Y is printable; and so in this case, Y is 
true-by (2)-and not printable. So either X is true and not 
printable or Y is true and not printable, but there is no way to 
tell which. 

Discussion: The above situation is analogous to a knight
knave island on which there are two inhabitants X and Y, 
with X claiming that Y is an established knight and Y claim
ing that X is not an established knight. An that can be in
ferred is that at least one of them is an unestablished knight, 
but there is no way to ten which. 

I deal with this situation in What Is the Name of This 
Book? in a section in the last chapter called "Doubly Gode
Han Islands."  

3 • We let Z = PA - P - NP - PA. 
We let Y = NP - Z (which is NP - PA - P - NP - PA) . 
We let X = P - Y (which is P - NP - PA - P - NP - PA) . 
It is immediate that X says that Y is printable and Y says 

that Z is not printable. As for Z, Z says that the associate of 
P - NP - PA is printable, but the associate of P - NP - PA is 
P - NP - PA - P - NP - PA, which is XI So Z says that X is 
printable. 

Thus X says Y is printable, Y says Z is not printable, and Z 
says X is printable. Now let us see what follows from this : 

Suppose Z is printable. Then Z is true, which means that X 
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is printable, hence true, which means that Y is printable, 
hence true, which means that Z is not printable. So if Z is 
printable, it is not printable, which is a contradiction. There
fore, Z is not printable, and therefore Y is true. So we know: 

(1) Z is not printable; 
(z) Y is true. 
Now, X is either true or false. Suppose X is true. If Z is 

false, then X is not printable, which means that X is true but 
not printable. If Z is true, then, since by (1) it is not printable, 
Z is true but not printable. So if X is true, then either X or Z 
is true but not printable. If X is false, then Y is not printable, 
hence Y is true-by (z)-and not printable. 

In summary, if X is true, then at least one of the two sen
tences X and Z is true but not printable.  If X is false, then it is 
Y that is true but not printable. 

4 • Let S be the sentence RA - RA. It says that the associat� 
of RA-which is S itself-is refutable; hence S is true if and 
only if S is refutable. Since S can't be true and refutable, it is 
therefore false but not refutable. 

5 • (a) Take P - RA - P - RA for X and RA - P - RA for Y. 
Clearly, X says that Y is provable, and Y says that the associ
ate of P - RA (which happens to be X) is refutable. So X says 
that Y is provable and Y says that X is refutable. (If we had 
taken PA - R - PA for X and R - PA - R - PA for Y, we 
would have had an alternative solution.) 

Now, if Y is provable, then Y is true, which means that X is 
refutable, hence false, which means that Y is not provable. 
Thus we get a contradiction from the assumption that Y is 
provable, and therefore Y is not provable. Since Y is not 
provable, then X is false. And so we know: 

(1) X is false; 
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(2) Y is not provable. 
If Y is true, then Y is true and not provable.  If Y is false, 

then X is not refutable (since Y says that X is refutable) ,  and 
so in this case, X is false but not refutable. Therefore, either Y 
is true and not provable or X is false and not refutable. 

(b) Take NP - NRA - NP - NRA for X, and 
NRA - NP - NRA for Y (or, alternatively, NPA - NR - NPA 
for X, and NR - NP A - NR - NPA for Y) and, as the reader 
can verify, X says that Y is not provable and Y says that X is 
not refutable. If X is refutable, X is false, Y is provable, 
Y is true, X is not refutable. Hence X is not refutable, and 
also Y is true. If X is false, X is false and not refutable. If X is 
true, Y is not provable; hence in this case Y would be true and 
not provable. 

Discussion: Analogously, suppose we have inhabitants X 
and Y of a knight-knave island where X claims that Y is an 
established knight and Y claims that X is an established 
knave. All that can be deduced is that one of the two (we 
don't know which) must be either an unestablished knight or 
an unestablished knave. The same thing holds if X claims that 
Y is not an established knight and Y claims that X is not an 
established knave. 

6 • Let W = NPA - P - R - R - NPA; 
Z = R - W (which is R - NPA - P - R - R - NPA) ; 
Y = R - Z  (which is R - R - NPA - P - R - R - NPA) ; 
X = P - Y (which is P - R - R - NPA - P - R - R - NPA) . 

X says that Y is provable, Y says that Z is refutable, Z says 
that W is refutable, and W says that X is not provable (W 
says that the associate of P - R - R - NP A, which is X, is not 
provable) . 

If W is refutable, W is false; hence X is provable, hence 
true; hence Y is provable, hence true; hence Z is refutable, 
hence false; hence vV is not refutable. Therefore, it cannot be 
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that W is refutable. So W is not refutable, and Z is therefore 
false. 

Now, if W is false, then W is false but not refutable. Sup
pose W is true. Then X is not provable . If X is true, X is true 
and not provable. Suppose X is false. Then Y is not provable. 
If Y is true, then Y is true but not provable. Suppose Y is false. 
Then Z is not refutable; so in this case Z is false but not re
futable. 

This shows that either W is false and not refutable, or X is 
true and not provable, or Y is true and not provable, or Z is 
false and not refutable. 

7 • This situation is little more than a notational variant of 
this chapter's Problem I !  

We know that 32983 produces 9832983 (in McCulloch's 
first machine) ; hence by MC1, Sentence 832983 is true if and 
only if Sentence 9832983 is provable. Also, by MC2, Sentence 
9832983 is true if and only if Sentence 832983 is not true; so, 
combining these last two facts, we see that Sentence 9832983 
is true if and only if it is not provable. So the solution is 
9832983. 

If we compare this with Problem 1, we see that obviously, 
9 plays the role of N, 8 plays the role of P, 3 plays the role of 
A, and 2 plays the role of the dash. Indeed, if we replace the 
symbols P,N,A,- by the respective numerals 8,9,3,2, the 
sentence NPA- NPA (which is the solution of Problem 1) 
becomes the number 9832983 (the solution of the present 
problem!) . 

8 • To begin with, McCulloch's third machine also obeys 
McCulloch's Law-i.e . ,  for any number A, there must be 
some X that produces AX. We prove this as follows: We 
know from Chapter 13 that there is a number H-namely, 
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5464-such that for any number X, H2X2 produces X2XZ. 
(Recall that H2Hz then produces itself, but this is not rele
vant to the present problem.) Now, take any number A. Let 
X = H2AH2. Then X produces AH2AH2, which is AX. Thus 
X produces AX. And so for any number A, a number X that 
produces AX is 54642AS4642. 

We need an X that produces g8X: Suppose X does produce 
g8X. Then Sentence 8X is true if and only if Sentence g8X is 
provable (by MC1) ; hence Sentence g8X is true if and only if 
Sentence g8X is not provable (by MC2) . Then Sentence g8X is 
true but not provable in the system (since the system is cor
rect) . 

Now, from the last paragraph, taking g8 for A, we see that 
an X which produces g8X is 54642g854642. Hence Sentence 
g854642g854642 is true but not provable in the system. 

9 • I told you that the logician was accurate, but I never told 
you that he knew he was accurate ! If he knew he was accu
rate, then the situation would lead to a paradox! Therefore, 
what properly follows from Facts 1, 2, and 3 is not a contra
diction but simply that the logician, though accurate, cannot 
know that he is accurate. 

This situation is not totally unrelated to another theorem 
of Codel's, known as Codel's Second Incompleteness Theo
rem, which (roughly speaking) states that for systems with a 
sufficiently rich structure (and this includes the systems 
treated in Codel's original paper) , if the system is consistent, 
then it cannot prove its own consistency. This is a profound 
matter, which I plan to discuss further in a sequel to this 
book. 
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Mort al 

and Immort al 

Numbers 

It had been some time since Craig had last seen McCulloch 
or Fergusson, when he met the two of them quite unexpec
tedly one late afternoon and the three happily went off to 
dine together. 

"You know," said McCulloch, after the meal, "there is one 
problem that has baffled me for quite a while."  

"And what i s  that?" asked Fergusson. 
"Well," replied McCulloch, "I have studied several ma

chines, and with each one I run into the same problem: In 
each of the machines, certain numbers are acceptable and 
others are not. Now, suppose I feed an acceptable number X 
into the machine. The number Y that X produces is either 
unacceptable or acceptable. If Y is unacceptable, the process 
terminates; if Y is acceptable, I feed Y back into the machine 
to see what number Z is produced by Y. If Z is unacceptable, 
then the process terminates; if Z is acceptable, I feed it back 
into the machine, and so the process continues for at least one 
more cycle. I repeat this over and over again, and there are 
two possibilities: one, I eventually get an unacceptable num
ber; two, the process goes on forever. If the former, then I 
call X a mortal number, with respect to the machine in ques-
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{:ion, and if the latter, I call X an immortal number. Of course, 
a given number might be mortal for one machine and im
mortal for another machine."  

"Let's consider your first machine," said Craig. "I  can 
think of plenty of mortal numbers, but can you give me an 
example of an immortal number?" 

"Obviously, 323," replied McCulloch. "323 produces it
self, so if I put 323 into the machine, out comes 323. I put 323 
back, and again out comes 323. So, in this case, the process 
clearly never terminates. "  

"Oh, of  course !"  laughed Craig. "Are there other immortal 
numbers?" 

1 

"Wen," replied McCulloch, "what would you say about the 
number 3223? Is it mortal or not?" 

2 

"What about the number 32223?" asked Fergusson. "Is it 
mortal or immortal for your first machine?" 

McCulloch thought about this for a bit. "Oh, that's not too 
difficult to settle," he replied. "I think you might enjoy trying 
your hand at it."  

3 

"You might also try the number 3232," said McCulloch. "Is 
this number mortal or immortal?" 
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4 

"What about the number 32323?" asked Craig. "Mortal or 
immortal?" 

5 

"These are all fine questions," said McCulloch, "but 1 haven't 
yet come to the main problem. A friend of mine has con
structed a rather elaborate number machine, which he claims 
can do anything that any machine can do; he calls it a uni
versal machine. Now, there are several numbers of which 
neither he nor 1 can tell whether they are mortal or im
mortal, and 1 would like to devise some purely mechanical 
test to determine which numbers are which, but so far 1 
have not succeeded. Specifically, I am trying to find a 
number H such that for any acceptable number X, if X is 
immortal then HX is mortal, and if X is mortal then HX 
is immortal. If 1 could find such a number H, then 1 
could decide for any acceptable number X whether X is 
mortal or immortal. "  

"How would finding such an H enable you to  do that?" 
asked Craig. 

"If 1 had such a number H," replied McCulloch, "I would 
first build a duplicate of my friend's machine. Then, given 
any acceptable number X, I would feed X into one of the 
machines, and at the same time my friend would feed HX 
into the other machine. One and only one of the processes 
would terminate; if the first process terminated, then 1 would 
know that X is mortal; if the second process terminated, then 
I would know that X is immortal. "  

"You wouldn't actually have to build a second machine," 
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said Fergusson. "You could alternate the stages of the two 
processes."  

"True," replied McCulloch, "but this i s  all hypothetical, 
since I have not been able to find such a number H. Perhaps 
this machine can't solve its own mortality problem-that is, 
perhaps there is no such number H. Then again, maybe I just 
haven't been clever enough to find it. This is the problem 
about which I would like to consult you gentlemen." 

"Well," replied Fergusson, "we must know the rules of  this 
machine. What are they?" 

"There are twenty-five rules," began McCulloch. "The 
first two are the same as those of my first machine."  

"Just a moment," said Fergusson. "Are you saying that 
your friend's machine obeys your Rules 1 and 2?" 

"Yes," replied McCulloch. 
"Well, that settles the matterl " replied Fergusson. "No 

machine obeying Rules 1 and 2 can possibly solve its own 
mortality problem! "  

"How can you have determined that so quickly?" asked 
Craig. 

"Oh, this isn't new to me," replied Fergusson. "A similar 
problem came up in my own work some time ago ." 

How did Fergusson know that no machine obeying Rules 1 
and 2 can solve its own mortality problem? 

• S O L U T I O N S . 

1 • We recall that 3223 produces 23223, and of course 23223 
produces 3223. So, we have the two numbers 3223 and 
23223, each of which produces the other. So, they are both 
immortal : Put one of them into the machine and the other 

210 



M O R TA L  A N D I M M O R T A L N U M B E R S 

comes out; put the second back into the machine and the first 
comes out. The process clearly never terminates. 

2 .. For any two numbers X and Y, let us say that X leads to Y 
if either X produces Y, or X produces some number that pro
duces Y, or X produces some number that produces some 
number that produces Y, or X produces some number that 
produces some number that . . .  that produces some number 
that produces Y. Stated otherwise, if starting the process with 
X we get Y at some state or other, then we will say that X 
leads to Y. As an example, 22222278 leads to 78--after six 
stages, in fact. More generally, if T is any string of 2'S, then 
for any number X, TX leads to X. 

Now, 32223 does not produce itself, but it does lead to it
self, because it produces 2232223, which in turn produces 
232223, which in turn produces 32223. Since 32223 leads to 
itself, it must be immortal. 

The reader might note the following more general fact: 
For any number T that consists entirely of 2'S, the number 
3T3 must lead to itself, and hence must be immortal. 

3 .  The only way I know to solve this problem is to show the 
more general fact that for any T consisting entirely of 2'S, the 
number 3T32 is immortal, and that therefore the specific in
stance 3232 is immortal. And this illustrates a still more gen
eral principle which will also be used in the solution of the 
next problem. 

Suppose we have a class of numbers (whether the class is 
finite or infinite makes no difference) , and the class is such 
that every member of the class leads to some member of the 
class (either itself or some other member) . Then every mem
ber of the class must be immortal. 

To apply this principle to the problem at hand, let us con-
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sider the class of all numbers of the form 3T32, where T is a 
string of 2'S. We will show that 3T32 must lead to another 
number of this class. 

Let us first consider the number in question, 3232. It pro
duces 32232, which is a member of this class. What about 
32232? It produces 2322232, which in turn produces 322232, 
which is a member of this class. What about 322232? It pro
duces 223222232, which produces 23222232, which produces 
3222232, so we are again back in this class. More generally, 
for any string T of 2'S, 32T32 produces T322T32, which leads 
to 322T32, which is again a member of this class. So all mem
bers of this class are immortal. 

4 • The number 32323 produces 3232323, which produces 
32323232323, which produces 3232323232323232323. The 
pattern should be obvious: any number consisting of 32 re
peated some number of times and then followed by 3 pro
duces another number of this form (a longer one, in fact) , and 
so all such numbers are immortal. 

5 • We first observe the following fact: Suppose X and Y are 
numbers such that X produces Y. Then if Y is mortal, X must 
also be mortal, because if Y leads to an unacceptable number 
Z in n stages, then X will lead to Z in n + 1 stages. Also, if Y is 
immortal, it never leads to any unacceptable number; hence 
X cannot lead to an unacceptable number, since the only way 
X can lead to a number is via Y. So, if X produces Y, then the 
mortality of X is the same as the mortality of Y (i .e . ,  they are 
either both mortal or both immortal) . 

Now, consider any machine that obeys at least Rules 1 and 
2 (and possibly others) . Take any number H.  We know that 
by Rules 1 and 2, there must be a number X that produces 
HX (indeed, we recall that H32H3 is such a number) . Since X 
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produces HX, then the numbers X and HX are either both 
mortal or both immortal (as we showed in the last para: 
graph) . So there cannot be any number H such that for every 
X, one of the numbers H or HX is mortal and the other im
mortal, because for the particular number X = H32H3, it is 
not the case that one of the numbers X or HX is mortal and 
the other immortal. Therefore, no machine obeying Rules 1 
and 2 can solve its own mortality problem. 

We might remark that the same goes for any machine 
obeying Rules 1 and 4, or indeed for any machine obeying 
McCulloch's Law. (This whole problem, incidentally, is 
closely related to a famous halting problem of Turing ma
chines, whose solution is also negative.) 
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The Machine 

That Never 

Got Built 

Shortly after the last episode, Craig was sitting quietly in his 
study one early afternoon. There was a timid knock at the 
door. 

"Pray come in, Mrs. Hoffman," said Craig to his landlady. 
"There is a wild, eccentric-looking gentleman to see you, 

sir," said Mrs. Hoffman. "He claims to be on the verge of the 
greatest mathematical discovery of all time! He says it would 
interest you enormously and insists on seeing you immedi
ately. What should I do?" 

"Well," replied Craig judiciously, "you might as well send 
him up; I have about half an hour to spare. "  

A few seconds later, the door o f  Craig's study burst open, 
and a distracted, frenzied inventor (for an inventor he was) 
practically flew into the room, flung his briefcase on a nearby 
sofa, threw up his hands, danced wildly around the room, 
shouting, "Eureka! Eureka! I'm about to find it! It will make 
me the greatest mathematician of all time! Why, the names 
of Euclid, Archimedes, Gauss will pale into insignificancel 
The names of Newton, Lobochevski, Bolyai, Riemann . . .  " 

"Now, now!" interrupted Craig, in a quiet but firm voice, 
"just what is it that you have found?" 

"I haven't exactly found it yet," replied the stranger, in a 
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somewhat more subdued tone. "But I'm about to find it, and 
when I do, I'll be the greatest mathematician who ever lived! 
"Why, the names of Galois, Cauchy, Dirichlet, Cantor . . .  " 

"Enough! " interrupted Craig. "Please tell me just what it 
is you are trying to find." 

"Trying to find?" said the stranger, with a somewhat hurt 
expression. "Why, I tell you, I 've almost found it! A universal 
machine which can solve all mathematical problems! Why, 
with this machine, I'll be omniscient! I'll be able to . . .  " 

"Ah, Leibniz's dream!"  said Craig. "Leibniz also had 
such a dream, but I doubt that the dream is realizable."  

"Leibnizl " said the stranger, contemptuously. "Leibniz! 
He just didn't know how to go about it! But I practically have 
such a machine! All I need is a couple of details-but here, 
let me give you a concrete idea of what I am after: 

"I am looking for a machine M," explained the stranger 
(whose name, it turned out, was Walton) , "with certain prop
erties: To begin with, you put a natural number x into the 
machine and after that a natural number y; then the machine 
goes into operation and out comes a natural number which 
we'll call M (x, y ) . So M (x, y )  is the output of M when the input 
is x as the first number and y as the second number." 

' 'I'm with you so far," said Craig. 
"Now, then," continued Walton, "I shall use the word 

number to mean positive integers, since the positive integers 
are the only numbers I will be considering. As you may know, 
two natural numbers are said to have the same parity if they 
are either both even or both odd, and they are said to be of 
different parities if one of them is even and the other one is 
odd. 

"For every x, let x# be the number M(x,x) .  Now, here are 
the three properties I want my machine to have: 

"Property 1. :  For every number a, I want there to be a num-
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ber b such that for every number x, M(x,b )  has the same par
ity as M(x# ,a ) .  

"Property 2 :  For every number b, I want there to be  a 
number a such that for every x, M(x,a)  has a different parity 
than M(x,b) . 

"Property 3: I want there to be a number h such that for 
every x, M (x,h) has the same parity as x. 

"These are the three properties I want my machine to 
have," concluded Walton. 

Inspector Craig thought about this for some time. 
"Then what is your problem?" he finally asked. 
"Alas," replied Walton. "1 have built a machine having 

Properties 1. and 2, and another having Properties l and 3, 
and a third having Properties 2 and 3. All these machines 
work perfectly-indeed, I have complete plans for them in 
my briefcase over there-but when I try to put the three 
properties together in one machine, something goes wrong!" 

"Just what is it that goes wrong?" asked Craig. 
"Why, the machine doesn't work at all ! " cried Walton, 

with an air of desperation. "When I put in a pair (x,y )  of 
numbers, instead of getting an output, I get a strange buzzing 
sound-something like a short circuit! Do you have any idea 
why that is?" 

"Well, well! " said Craig. "This is something I'll have to 
think about. I must be off now on a case, but if you'll leave 
your card--or, if you haven't one, your name and address-I 
will let you know if 1 can arrive at any solution." 

Several days later, Inspector Craig wrote a letter to Wal
ton that began as follows: 

My dear Mr. Walton: 

I thank you for your visit and for calling my attention 
to the machine that you are trying to build. To be per-
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fectly honest, I cannot quite see how, even if you ac
tually constructed such a machine, it would be capable 
of solving all mathematical problems, but doubtless you 
understand this matter better than I. More to the point, 
however, I must tell you that your project is much like 
trying to build a perpetual-motion machine: it simply 
cannot be done! Indeed, the situation here is even 
worse-for a perpetual-motion machine, though not 
possible in this physical world, is not logically impossi
ble ; whereas such a machine as you propose is not 
merely physically impossible, but logically impossible, 
since the three properties you mention conceal a logical 
contradiction. 

Craig's letter then went on to explain just why the exis
tence of such a machine is a logical impossibility. Can you see 
why? 

It will be helpful to break up the solution into three steps: 
(1) Show that for any machine having Property 1 , for any 

number a, there must be at least one number x such that 
M(x,a) has the same parity as x. 

(2) Show that for any machine having Properties 1 and 2,  
for any number b, there is  some number x such that M(x,b)  
has a different parity from x. 

(3) No machine can have Properties 1, 2, and 3 combined . 

• S O L  U. T I O N . 

(a) Consider a machine with Property 1 .  Take any number a. 

By Property 1 there is a number b such that for every x, 
M(x,b)  has the same parity as M(x#,a) .  In particular, with b 
taken for x, M(b,b )  has the same parity as M (b#,a) .  However 
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M(b,b )  is the number b#, so b# has the same parity as 
M(b#,a ) .  So, letting x be the number b#, we see that M(x,a) 
has the same parity as x. 

(b) Consider now any machine having properties 1 and 2.  
Take any number b. By Property 2 there is some a such that 
for every x, M(x,a) has different parity than M(x,b) .  And, by 
Property 1 ,  there is at least one x such that M(x,a) has the 
same parity as x, as we proved in (a) above. Such an x must 
then have different parity from M(x 1,b,)-because it has the 
same parity as M(x,a) , which has different parity from 
M(x, 'b ) .  

(c) Again consider a machine having properties 1 and 2.  
Take any number h .  According to (b) above, (reading "h" for 
"b") there is at least one x such that M(x,h)  has different par
ity than x. Therefore, it cannot be that for all numbers x, 
M(x,h )  has the same parity as x; in other words, Property 3 
cannot hold. Thus, Properties 1 ,  2, and 3 are "incompossible" 
(to use Ambrose Bierce's lovely term!) .  

Note: The impossibility of Walton's machine is  closely re
lated to Tarski's theorem (Chapter IS), and it is not difficult 
to prove the theorem and the machine's impossibility by a 
common argument. 
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Leibniz 's 

Dream 

Fergusson (as wen as Walton, in his own peculiar way) was 
attempting something which, if successful, would fulfil one 
of Leibniz's most fervent dreams: Leibniz envisioned the 
possibility of a calculating machine that could solve all math
ematical problems-and all philosophical ones as well! Leav
ing aside the philosophical problems, it appears that for even 
the mathematical ones, Leibniz's dream is not feasible. This 
follows from the results of G6del, Rosser, Church, Kleene, 
Turing, and Post, to whose work we now turn. 

There is a type of computing machine whose function is to 
calculate a mathematical operation on the positive integers. 
For such a machine, you feed in a number x (the input) and 
out comes a number y (the output) . For example, you can 
easily design a machine (not a very interesting one, to be 
sure! )  such that whenever a number x is fed in, out comes the 
number x + 1 .  Such a machine may be said to compute the 
operation of adding 1 .  Or we might have a machine that 
computes an operation, on two numbers, such as ad9ition. 
For such a machine, you first feed in a number x, then a num
ber y; then you press a button and, after a while, out comes 
the number x + y. (There is a technical name for such ma-
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chines, of course-I believe they are called adding ma

chines!) 
There is another type of machine that might be called a 

generating or enumerating machine, which will play a more 
fundamental role in the approach we will take here (it fol
lows the theories of Post) . Such a machine has no inputs; it is 
programmed to generate a set of positive integers. For exam
ple, we might have one machine to generate the set of even 
numbers, another to generate the set of odd numbers, an
other to generate the set of prime numbers, and so forth. A 
typical program for a machine to generate the even numbers 
might run something like the following. 

We give the machine two instructions: (1) that it print out 
the number 2; (2) that if ever it prints out a number n it may 
also print out n + 2. (You also give auxiliary rules that sys
tematize following the instructions, so that anything the ma
chine can do, it eventually will do.) Such a machine, obeying 
Instruction (1) , will sooner or later print out 2, and having 
printed 2, it will sooner or later, by Instruction (2) , print out 
4, and having printed 4 will sooner or later print 6, again by 
Instruction (2) , then 8, then 10,  and so forth. This machine, 
then, will generate the set of even numbers. (Without further 
instructions, it could never come out with 1, 3, 5, or any of 
the odd numbers.) To program a machine to generate the set 
of odd numbers, of course, we need merely change the first 
instruction to : "Print out 1 ." Sometimes two or more ma
chines are coupled so that the output of one machine can be 
used by one of the other machines. For example, suppose we 
have two machines, A and B, and program them as follows: 
To A we give two instructions: " (1) Print out 1 ;  (2) if ever 
Machine B prints out n, then print out n + 1 ." To Machine B 
we give only one instruction: " (1) If ever Machine A prints 
out n, then print out n + 1 ." What set will A generate, 
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and what set will B generate? The answer is that A will gen
erate the set of odd numbers and B will generate the set of 
even numbers. 

Now, a program for a generating machine, instead of being 
given in English, is coded into a positive integer (in the form 
of a string of digits) and matters can be arranged so that every 
positive integer is the number of some program. We let Mn 
be the machine whose program has code number n. We now 
think of all generating machines as listed in the infinite se
quence Mp Mz, . . •  , Mn, . . .  (M1 is the machine whose pro
gram number is 1, Mz t.he machine whose program number is 
2, and so forth.) 

For any number set A (set of positive integers, that is) and 
any machine M, we shall say that M generates A or, alterna
tively, that M enumerates A, if every number in A is even
tuany printed out by M ;  but no number outside A ever gets 
printed out by M.  We shall say that A is effectively enumer
able (another technical term is recursively enumerable) if 
there is at least one machine Mj that enumerates A. We shall 
say that A is solvable (another technical term is recursive)  if 
there is one machine Mi that enumerates A and another ma
chine Mj that enumerates the set of all numbers that are not 
in A. Thus, A is solvable if and only if both A and its comple
ment A are effectively enumerable. 

Suppose A is solvable, and we are given a machine Mj that 
generates A and a machine Mi that generates the comple
ment of A. Then we have an effective procedure to deter
mine whether any number n lies inside A or outside A: Sup
pose, for example, we wish to know whether the number 10 is 
in A or not. We set both machines, Mi and Mi, going simul
taneously and wait. If 10 lies inside A, then sooner or later Mi 
will print out 10, and we will know that 10 belongs to A. If 10 
lies outside A, then sooner or later machine Mi will print out 
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10, and we will know that 10 doesn't belong to A. So, even
tually and inevitably, we will know whether 10 belong to A 
or whether it doesn't. (Of course, we have no idea in advance 
of how long we will have to wait; all we know is that in some 
finite time we will know the answer.) 

Now, suppose a set A is effectively enumerable but not 
solvable. Then we have a machine M; that generates A, but 
we have no machine to generate the complement of A. Sup
pose again we would like to know whether a given num
ber-say, lo--is or is not in A. The best we can do in this case 
is to set the machine M; going and hope for the best ! We now 
have only a 50 percent chance of ever learning the answer. If 
10 is in A, then sooner or later we will know it, because 
sooner or later Mi will print out 10. If 10 is not in A, however, 
M; will never print out 10, but no matter how long we wait, 
we will have no assurance that M; might not print out 10 at 
some later time. So if 10 is in A, we will sooner or later know 
that it is, but if 10 isn't in A, then at no time can we definitely 
know that it isn't (at least by observing only the machine MJ 
We might aptly call such a set A semisolvable. 

The first important feature of these generating machines is 
that it is possible to design a so-caned universal machine U 
whose function is to observe systematically the behavior of 
all the machines Ml' M2, • • •  , Mn> . . .  , and whenever a ma
chine Mx prints out a number y, U is to report the fact. How 
does it make this report? By printing out a number: for any x 

and y we again let X4y  be the number, which consists of a 
string of l'S of length x followed by a string of o's of length y. 
Our principal instruction to U is : "Whenver Mx prints out y, 
then print out X4Y. " 

Suppose, for example, that Ma is programmed to generate 
the set of odd numbers, and Mb is programmed to generate 
the set of even numbers. Then U will print out all the num-
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bers 0"'1 ,  a"'3, 0"'5,  a '1* 7, etc . ,  and also all the numbers b<>z, 

b"'4,  b",6, b",8, etc . ,  but V will never print out a"'4 (since Ma 
never prints out 4) , nor bft3 (since Mb never prints out 3) . 

Now, the machine V itself has a program, hence is one of 
the programmable machines Mp Mz, . . .  , Mn> . . .  Thus, there 
is a number k such that Mk is the very machine V! (In a more 
complete technical account of the matter, I could tell you 
what the number k is.) 

We might note that this universal machine Mk observes 
and reports its own behavior as well as that of all the other 
machines. So whenever Mk prints out a number n, it must 
also print out kftn, hence also kft (hn) ,  hence also h [kft (kftn)) ,  
and s o  forth. 

A second important feature of these machines is that for 
any machine Ma we can program a machine Mb to print out 
those and only those numbers x such that Ma prints out xftx. 

(Mb' so to speak, "keeps watch" on Ma and is instructed to 
print out x whenever Ma prints xftx.) It is possible to code 
programs in such a way that for each a, 2a is such a number 
b; that is, for every a, Mza prints out those and only those 
numbers x such that Ma prints out xftx. We will assume this 
done, and so let us record two basic facts that will be used in 
what follows : 
Fact L :  The universal machine V prints out those and only 

those numbers Xft y such that Mx prints out y. 
Fact 2: For every number a, the machine Mza prints out 

those and only those numbers x such that Ma prints 
out xftx. 

We now come to the central issue : Any formal mathemati
cal problem can be translated into a question of whether a 
machine Ma does or does not print out a number b. That is, 
given any formal axiom system, one can assign Codel num
bers to all the sentences of the system and find a number a 
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such that the machine Ma prints out the Codel numbers of 
the provable sentences of the system, and no other numbers. 
So to find out whether a given sentence is or is not provable 
in the system, we take its Codel number b and ask whether 
the machine Ma does or does not print out b. Thus, if we had 
some effective method of deciding which machines print out 
which numbers, we could then effectively decide which sen
tences are provable in which axiom systems. This would con
stitute a realization of Leibniz's dream. Moreover, the ques
tion of which machines print out which numbers can be 
reduced to the question of which numbers are printed out by 
the universal machine U, because the question of whether or 
not machine Ma prints out b is equivalent to the question of 
whether or not U prints out the number a(>b. Therefore, a 
complete knowledge of U would entail a complete knowl
edge of all the machines, and hence of all mathematical sys
tems. Conversely, any question of whether a given machine 
prints out a given number can be reduced to a question of 
whether a certain sentence is provable in a certain mathe
matical system, and so a complete knowledge of all formal 
mathematical systems would imply a complete knowledge of 
the universal machine. 

The key question, then, is this : Let V be the set of numbers 
printed out by the universal machine U (this set V is some
times called the universal set) .  Is this set V solvable or not? If 
it is, . then Leibniz's dream is realized; if it isn't, then Leib
niz's dream cannot ever be realized. Since V is effectively 
enumerable (it is generated by the machine U), the question 
boils down to whether or not there is some machine Ma that 
prints out the complement V of V; that is, is there a machine 
Ma which prints out those and only those numbers that U 
does not print? This question can be completely answered 
just on the basis of the given conditions Facts 1 and 2 above. 
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Theorern L: The set V is not effectively enumerable : Given 
any machine Ma, either there is some number in V that Ma 
fails to print, or 1M prints at least one number that is in V 
rather than V. 

Can the reader see how to prove Theorem L? To take a 
special case, suppose the claim were made that the machine 
Ms enumerated Y. To disprove this claim, it would suffice to 
exhibit a number n and show that either n is in Y and Ms fails 
to print n or n is in V and Ms prints n. Can you find such a 
number n? 

I shall give the solution now rather than at the end of the 
chapter. The solution is really Codel's argument over again: 

Take any number a. By Fact z, for every number x, Ma 
prints xox if and only if Mza prints x. But, also by Fact 1 , Mza 
prints x if and only if the universal machine U prints za"'x, or, 
what is the same thing, if and only if zaox is in the set V. 
Therefore, Ma prints xox if and only if zaox is in V. In partic
ular (taking za for x) ,  Ma prints the number zaoza if and only 
if zaoza is in V. So either: (1) Ma prints za<)za and za"'za is in 
V; (z) Ma doesn't print za>1tza and za<)za is in V. If (1) holds, 
then Ma prints out the number za<)za, which is not in V but 
in V; this means that Ma does not generate the set Y, because 
it prints. out at least one number (za<)za),  which is not in Y. If 
(z) holds, then again Ma fails to generate the set V, because 
the number zaoza is in V but fails to get printed by Ma. So in 
neither case does Ma generate the set V. Since no machine 
can generate Y, the set Y is not effectively enumerable. 

Of course, for the special case a = 5, the number n is 
10"' 10.  

Now, what does all this mean with respect to Leibniz's 
dream? Strictly speaking, one cannot prove or disprove the 
feasibility of Leibniz's hope, because it was not stated in an 
exact form. Indeed, no precise notion of a "calculating ma-
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chine" or "generating machine" existed in Leibniz's day; 
these notions have been rigorously defined only in this cen
tury. They have been defined in many different ways (by 
Code!, Herbrand, Kleene, Church, Turing, Post, Smullyan, 
Markov, and many others) , but all these definitions have been 
shown to be equivalent. If by "solvable" is meant solvable 
according to any of these equivalent definitions, then Leib
niz's dream is not feasible, because the simple fact is that the 
machines can be numbered in such a way that Facts 1 and 2 
do hold. Then, by Theorem L, the set V generated by the uni
versal machine is not solvable; it is only semisolvable. There
fore, there is no purely "mechanical" procedure for finding 
out which sentences are provable in which axiom systems and 
which ones are not. Thus, any attempt to invent a clever 
"mechanism" that will solve all mathematical problems for 
us is simply doomed to failure. 

In the prophetic words of the logician Emil Post (1944) , 
this means that mathematical thinking is, and must remain, 
essentially creative . Or, in the witty comment of the mathe
matician Paul Rosenbloom, it means that man can never 
eliminate the necessity of using his own intelligence, regard
less of how cleverly he tries. 
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