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Preface

This volume, though a sequel to our book G.I.T. (Godel's Incom-
pleteness Theorems), can be read independently by those who have
seen at least one proof of Godel's incompleteness theorem for Peano
Arithmetic (or at least know that the system is recursively axiomati-
zable). Our introductory chapter (Ch. 0) reviews all the background
of G.I.T. (notations, definitions, key theorems and proofs) necessary
for this volume.

Our study deals mainly with those aspects of recursion theory
that have applications to the metamathematics of incompleteness,
undecidability and related topics. It is both an introduction to the
theory and a presentation of new results in the field.

The Godel and Rosser incompleteness theorems were forerunners
of many results of recursion theory—indeed, they were significantly
responsible for opening up many portions of the field. But also,
subsequent developments in pure recursion theory have shed further
light on the phenomenon of incompleteness (and uniform incom-
pleteness, as defined in our closing chapter). It is our purpose here
to explore these fascinating interrelationships more deeply. Some re-
lated work of John Shepherdson (studied in G.I.T. and thoroughly
reviewed here) plays a fundamental role in this study (particularly
in Chapters 7 and 12).

Although we want this book to be thoroughly comprehensible to
the reader with no prior knowledge of recursive function theory, we
have written it just as much for the expert, who will find Chapters 4-
12 (and particularly 6-12) to be the more mathematically original
ones. A good deal of the latter portion of our Theory of Formal Sys-
tems [1961] is given an upgraded presentation here; we supply more
motivation and make the results more easily accessible to the general
reader, and several of the results and techniques are improved.

And now, for the reader familiar with the field, here is a very brief
summary of what we do. Chapters 1-3 consist mainly of standard
introductory material (basic closure properties of r.e. relations, the
enumeration and iteration theorems, etc.) with Chapter 2 beginning
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an account of the author's earlier work on undecidability, essential
undecidability and recursive inseparability. Chapters 4 and 5 lay
the groundwork for Chapter 6 where we show (among other things)
how the Ehrenfeucht-Feferman and Putnam-Smullyan theorems of
1960 can be proved without appeal to the recursion theorem or any
other fixed point argument. The original proofs of these theorems
leaned heavily on the use of creative sets and effectively inseparable
pairs, but these turn out to be inessential. The really important
underlying fact (Theorem B of Chapter 6) is that if (A,B) is a dis-
joint pair of r.e. (recursively enumerable) sets and is semi-doubly
universal (i.e. for any disjoint r.e. sets C and D, there is a recursive
function f ( x ) which maps C into A and D into B), then (^4.,-B) is
doubly universal. We prove this key result in three different ways
(each of which reveals certain facts not revealed by either of the oth-
ers). Our first proof (Ch. 6) is along the lines of Smullyan [1963]
and is based on the notion of complete effective inseparability as
defined in Chapter 5. This proof requires no fixed point argument.
Our third proof (Chapter 10) is pretty much the original one based
on effective inseparability and uses the double recursion theorem (in
the new form given in Chapter 9). Our second proof (Chapter 7)
is of particular interest. We obtained it by taking the clever argu-
ment of Shepherdson [1961] (which we give in Ch. 0) and transfer it
from the domain of formal theories to recursion theory itself. Now,
we agree with Shepherdson's comment [1961] that his result (that
every consistent axiomatizable Rosser system for binary relations
is an exact Rosser system for sets) is apparently incomparable in
strength with the Putnam-Smullyan result that every consistent ax-
iomatizable Rosser system for sets in which all recursive functions of
one argument are definable is an exact Rosser system for sets. But
the interesting thing is that a slight modificaton of Shepherdson's
argument (which we give in Chapter 7) yields a totally new proof
of the Putnam-Smullyan theorem which uses virtually no recursion
theory at all and furthermore yields a curious strengthening of the
theorem.1

The next topic (Chapters 8 and 9) is recursion and multiple re-
cursion theorems. Here we present a good deal of new material—far
more than is needed for our applications to metamathematics. There
are many subtle points involved and their interrelationships are quite
fascinating. We divide recursion theorems into two types—weak and

'Many variations of Shepherdson's theorem appear in this volume. Some particularly
interesting ones crop up in our final chapter.
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strong. The former assert the existence of fixed points; the latter es-
tablish the existence of fixed point functions. The standard proof of
the weak version of the recursion theorem requires only one applica-
tion of the iteration theorem; the standard proof of the strong version
requires two. We give a second proof of the strong recursion theorem
that requires only one application of the iteration theorem. A minor
modification of this proof yields an apparent strengthening of the re-
cursion theorem that we call the extended recursion theorem. [Can
it be derived as a corollary of any generally known recursion theo-
rem? We do not know.] This extended recursion theorem provides
alternative proofs of two special results of Chapter 9—the symmet-
ric recursion theorem and a result we call "Theorem N". Both these
results afford entirely new proofs of the author's double recursion
theorem. Our original version of the double recursion theorem (given
in T.F.S.) required a recursive pairing function J(x,y) for its very
statement; our new version does not and is accordingly more directly
applicable to double productivity and effective inseparability.

These applications are given in Chapter 10. Chapter 11 is more
for the specialist than the general reader and consists mainly in tech-
nical niceties concerning some strengthenings of earlier results.2 Nei-
ther this chapter nor Chapter 10 is necessary for the final chapter
(Ch. 12).

Our closing chapter is the principal one of the book and is writ-
ten for the general reader and specialist alike. It introduces a va-
riety of new concepts (e.g., effective Rosser systems, sentential and
double sentential recursion properties, Rosser fixed point properties,
uniform incompleteness) and ties them up with notions of earlier
chapters. It contains attractive applications of recursion and dou-
ble recursion theorems combined with Shepherdson type arguments
which together yield the main results of this study.

I wish to thank Perry Smith for his many helpful corrections and
suggestions.

2 The specialist will probably find most interest in the section on feeble partial
functions.
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Chapter 0

Prerequisites

As we remarked in the preface, although this volume is a sequel to
our earlier volume G.I.T. (Godel's Incompleteness Theorems), it can
be read independently by those readers familiar with at least one
proof of Godel's first incompleteness theorem. In this chapter we
give the notation, terminology and main results of G.I.T. that are
needed for this volume. Readers familiar with G.I.T. can skip this
chapter or perhaps glance through it briefly as a refresher.

/. Some General Incompleteness Theorems

§0. Preliminaries. We assume the reader to be familiar with
the basic notions of first-order logic—the logical connectives, quan-
tifiers, terms, formulas, free and bound occurrences of variables, the
notion of interpretations (or models), truth under an interpretation,
logical validity (truth under all interpretations), provability (in some
complete system of first-order logic with identity) and its equivalence
to logical validity (Godel's completeness theorem). We let S be a sys-
tem (theory) couched in the language of first-order logic with identity
and with predicate and/or function symbols and with names for the
natural numbers. A system S is usually presented by taking some
standard axiomatization of first-order logic with identity and adding
other axioms called the non-logical axioms of S.

We associate with each natural number n an expression n of S
called the numeral designating n (or the name of n). We could, for
example, take 0,1,2,..., to be the expressions 0,0', 0",..., as we did
in G.I.T. We have our individual variables arranged in some fixed

1



2 Chapter 0. Prerequisites

infinite sequence vi, v?,..., vn, —
1 By F(VI, ..., vn] we mean any

formula whose free variables are all among v\,... ,vn, and for any
(natural) numbers ki,...,kn by F(ki_,... &„), we mean the result
of substituting the numerals fci,..., kn for all free occurrences of
vi,... ,vn in F respectively. In particular, if F(v\) is a formula in
which vi is the only free variable, then for any number n, F(n) is
the sentence resulting by substituting re for (all free occurrences of)
Vi in F(VI). [By a sentence we mean a formula in which there are
no free variables.] And now, by F[n] (notice the square brackets!)
we shall mean the sentence Vv1(?;1 = n D F(VI)). The sentences
F[n] and -F(re) are logically equivalent. Hence, one is provable in <S
iff the other is—indeed the sentence F(n) = F[n] is a theorem of
first-order logic with identity; hence it is provable in <S.2 Actually,
for any expression E of S, whether a formula or not, we define E[n]
to be the expression Vfi^i = n D E). HE happens to be a formula,
then so is E[n], but in any case, E[n] is well defined.

Godel Numbering. We arrange all expressions of S (whether for-
mulas or not) in some fixed 1—1 sequence EQ, EI, ..., En,... and we
call n the Godel number of En.

3 For any expression X, we let g(X)
be its Godel number (thus g(En} — n).

For any numbers a and 6, by r(a,&), we mean the Godel number
of .E0[6]. The function r(x, j/) plays a crucial role and was referred to
in G.I.T. as the representation function of S. We let cf(x) = r(x,x).
Thus, d(n) is the Godel number of En[n]. We call d(x) the diagonal
function of S.

We let P be the set of Godel numbers of the provable formulas of
<S, and R be the set of Godel numbers of the refutable formulas of S.
[A formula is called refutable if its negation is provable.] For any set
A of numbers, we let A* be the set d~l(A)—i.e. the set of all n such
that d(n) G A. Thus P* is the set of all re such that .En[re] is provable
in S, and R* is the set of all re such that -Era[re] is refutable in S. If En

happens to be a formula, then En[n] is logically equivalent to En(n).
Hence, re € P* iff (if and only if) En(n) is provable, and so P* is also
the set of all re such that En(n) is provable (in S). Likewise, R* is
the set of all re such that En(n} is refutable in S.

1In G.I.T. we took these to be (vi) , («u), . ...
2 The clever device of using F[n] instead of F(n) to achieve diagonalization and self-
reference is due to Alfred Tarski. It circumvents the necessity of arithmetizing
substitution.

3A specific and handy Godel numbering was given in Ch. 2, G.I.T.
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By the diagonalization of an expression En, we mean E^fn]. Thus,
d(n) is the Godel number of the diagonalization of En.

We call S consistent (sometimes simply consistent] if no sentence
is both provable and refutable in S. We call S complete if every
sentence is either provable or refutable in <5; otherwise, S is called
incomplete. A sentence X is called undecidable in S if it is neither
provable nor refutable in S.

Representability. A formula F(VI, . . . , vn) is said to represent in <S
the set of all ra-tuples (ai, . . . , an) of numbers such that -F(ai, . . . , an)
is provable in S. A relation R ( X I , . . . ,xn) (of natural numbers) is
said to be representable in S if it is represented in S by some formula

We are regarding sets (of numbers) as special cases of relations
(they are relations of one argument) and so the above definitions are
also applicable to sets. Thus, F(VI) represents in S the set of all n
such that F(n) is provable in S. Thus, to say that F(VI) represents
A is equivalent to the following condition: For all n, F(n) is provable
in S <->• n € A. [We write «-+• to mean if and only if. Thus, <-» is
a symbol of the metalanguage. For the equivalence symbol of the
object language S, we use "=".] Also, F(VI) represents the set of
all n such that F[n] is provable in S (since F(n) is provable in S iff
F[n] is provable in «S).

§1. Some Abstract Incompleteness Theorems. A sen-
tence Xn (with Godel number n) will be called a Godel sentence
for a number set A (with respect to S understood) if the following
condition holds:

We shall call Xn a negative Godel sentence for A if the following
holds:

Obviously every sentence is a Godel sentence for the set P and is
a negative Godel sentence for the set R. If X is a Godel sentence for
R or if X is a negative Godel sentence for P, then X is provable in S
iff X is refutable in <S; and if S is consistent, then X is undecidable
in S.

Lemma A. If A* is representable in S, then there is a Godel sen-
tence for A and a negative Godel sentence for A.

f(v1,...,vn).
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More specifically, suppose H(v\) is a formula in v\ and h is its
Godel number. Then

(1) If H(v\) represents A*, then H[h] is a Godel sentence for A.
(2) If the negation of H(v\) (i.e. ~ H(v\)} represents A*, then H[h]

is a negative Godel sentence for A.

Proof.

(1) Suppose H(v\) represents A*. Then for any n, H[n] is provable
iff n € A*. Hence, H[h] is provable_iff d(h) € A, but d(h) is the
Godel number of H[h], Hence, H [h] is a Godel sentence for A.

(2) Suppose ~ H(v\) represents A*. In this case, H[h] is refutable
in <S iff d(h) G A, and so #[^] is a negative Godel sentence for
A.

Remarks. Re (2), if A* is represented in S by a formula jP(fi), then
~ F(VI) is a formula whose negation represents A* (since ~~ ^(^i)
is logically equivalent to F(VI)). If A* is representable in <S, then
there is a formula H(v\) (namely ~ F(v\)) whose negation represents
A*.

From (2) of Lemma A we have:

Theorem I.4 SupposeS is consistent, and P* is representable inS.
Then S is incomplete. More specifically, if S is consistent and H(VI)
is a formula whose negation represents P*, then H(li) is undecidable
in S where h is the Godel number of H(v\).

Proof. By (2) of Lemma A, the hypothesis implies that H[h] is a
negative Godel sentence for P. Hence, it is undecidable in S (if <S is
consistent), and H (h) is also undecidable in S.

In T.F.S. (Theory of Formal Systems) we proved the following
"dual" of Theorem 1:

Theorem 1°.5 If S is consistent and if R* is representable in S,
then S is incomplete. More specifically, suppose S is consistent,
and H(v\) is a formula that represents R* in S. Then H(h) is
undecidable in S where h is the Godel number of H(VI).

4Th. 1 of Ch. 5, G.I.T.
sTh. 1°, Ch. 5, G.I.T
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Proof. By (1) of Lemma A, the hypothesis implies that H[h] is a
Godel sentence for R. Hence it is undecidable in S (assuming con-
sistency of S), and H(h) is also undecidable in <5.

Godel's original incompleteness proof boils down to representing
P* in the system <S under consideration. To do this, however, Godel
had to make a certain assumption about S—the assumption of "in-
consistency", to which we now turn.

§2. ^-Consistency. We say that a system S is u> -inconsistent
if there is a formula F(VI) such that the sentence 3viF(vi) is provable
in 5, yet all the sentences F(Q), F(T), . . . , -F(ra) . . . are refutable in
S. A system is called w-consistent if it is not ^-inconsistent. When
w-consistency is under discussion, the phrase "simply consistent" is
often used to mean consistent in order to avoid possible confusion. If
a system S is (simply) inconsistent, then it is certainly ^-inconsistent
since every formula is, then, provable. So an ^-consistent system is
also simply consistent.

Enumerability in <5. We say that a formula F(VI,VZ) enumerates
a set A in S if for every number n, the following two conditions hold:

(1) If n € A, then for some ra, F(n,m) is provable in S.
(2) If n g A, then for every m, F(n, m) is refutable in S.

Suppose now that A is enumerable in S — enumerated in S by some
formula F(VI,VI). Then for any n, if n 6 A, then for some m,
the sentence F(n, m) is provable. Hence, by first-order logic, the
sentence ^v^F^n^v^) is provable. Conversely, suppose 3v2F(n,v<2^ is
provable. Does it follow that n is in Al Not necessarily, but if S is
u>- consistent, then n is in A because if n were not in A, then all the
sentences

would be refutable. Hence, S would be ^-inconsistent (since it is
provable that 3v^F(n,v^)~). Thus, if S is w-consistent and F(v\,vi)
enumerates A, then for every n, n € A iff 3v2-F(n,t;2) is provable.
And so we have:

Lemma a;.6 Suppose S is ̂ -consistent. Then every set enumerable
in S is representable in S — more specifically, if F(VI,VZ) enumerates

6The a>-consistency lemma, Ch. 5, G.I.T.
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A, then the formula 3v%F(vi,V2) represents A.

It follows from the above lemma and Theorem 1 that if P* is
enumerable in S and if S is w-consistent, then S is incomplete. But
more can be said.

Suppose A(V\,VI) is a formula that enumerates the set P*, and
suppose that S is ^-consistent. Then by Lemma u>, the formula
3v-2A(v\,v<z) represents P* in S. Hence, the logically equivalent for-
mula ~ V^2 ~ A(vi,V2) represents P*. Therefore, the negation of the
formula V^2 ~ A(VI , ̂ 2) represents P*. So if h is the Godel number of
V^2 ~ A(VI,VI), then by Theorem 1, the sentence Vv2 ~ A(h,V2) —
call this sentence G — is undecidable in S. This means that G is
neither provable nor refutable in S. However, only the simple con-
sistency of S is necessary to establish the unprovability of G because
suppose G were provable, then h would be in the set P* . Hence,
for some number m, the sentence A(h,m) would be provable (since
A(vi,V2) enumerates P*), and the sentence ^v-iA(h,V2) would be
provable which with the provability of V^ ~ A(h,v-2) (which is G)
entails a simple inconsistency. Thus, if G is provable, then S is
simply inconsistent. And so we have:

Theorem 2.7 Suppose that A(vi,v2) enumerates P* in S, and h is
the Godel number ofVv^ ~ A(VI,VZ). Let G be the sentence

Then

(1) If S is simply consistent, then G is not provable in S.
(2) If S is u> -consistent, then G is neither provable nor refutable in

S.

Remarks. Theorem 2 constitutes an abstract form of Godel's in-
completeness theorem. For the type of system S investigated by
Godel, the set P* (and also R*) was shown to be enumerable in S
without the assumption of ̂ -consistency. It was in passing from the
enumerablity of P* in S to the representability of P* in S that in-
consistency entered the picture.

§3. Rosser's Method. J. Barkley Rosser obtained incom-
pleteness, not by representing P* in <S, but by representing some

7Th. 3, Ch. 5, G.I.T.
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superset of P* disjoint from R*. [We call B a superset of A if A is
a subset of B]. It turns out to be just as good if we represent some
superset of R* disjoint from P* (as we will see).

Separability. Given two number sets A and B, we say that a for-
mula F(VI) weakly separates A from B (in «S) if F(n) is provable
when n G A and is not provable for n e B — in other words, if F(v\)
represents some superset A' of A disjoint from B. We say that F(VI)
strongly separates A from B if F(n) is provable for n € A and is
refutable for n € -B. We say that A is weakly (strongly) separable
from B (in <S) if some formula F(VI) weakly (strongly) separates A
from B. It is obvious that if S is consistent, then any formula that
strongly separates A from B also weakly separates A from B. Also,
if F(VI) represents A, then it weakly separates A from B whenever
B is a set disjoint from A.

We proved (Theorem 1°) that if R* is represent able in S and S
is (simply) consistent, then S is incomplete. The following theorem
(on which Rosser's proof is based) is stronger:

Theorem 3.8 If R* is weakly separable from P* in S, then S is
incomplete. More specifically, if H(VI) weakly separates R* from P*
in S, then H(h) is undecidable in <S where h is the Godel number of

Proof. Suppose H(VI) weakly separates R* from P* in <S. Then for
any number ra, H(n) is provable (in S} if n £ R*, and H(n) is not
provable if n € P*. Hence, H(Ji) is provable if h € R* and is not
provable if h € P*. Also, h e P* if and only if H(h) is provable.
Thus if H(h) is provable, then h £ P* and -ff(^) is not provable,
which is a contradiction. Hence, H(h) is not provable. If H (h) were
refutable, then h would be in R*. Hence, H(h) would be provable,
which it isn't. Therefore, H(h) is not refutable either.

As a corollary we have:

Theorem 3.1. If H(VI) strongly separates R* from P* and S is
simply consistent, then H(h) is undecidable in S where h is the Godel
number of H(VI).

Remark. One can also show that if H(VI) is a formula whose nega-
tion weakly separates P* from R*, then H(h) is undecidable in S.

8Th. i, Ch. 6, G.I.T.

H(v1_.
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One also applies the notion of separability to relations of natural
numbers. We say that F(VI,. .. ,vn) weakly separates R\(XI,. .. ,arn)
from RZ(XI,. .. ,xn) if H(a\,... ,an) is provable for every n-tuple
(ai,... , an) in RI and for none in R%. F is said to strongly separate
RI from RI if F is provable for every ra-tuple in jRi and refutable for
every n-tuple in R^.

§3.1. Definability and Complete Representability. We
regard sets (of natural numbers) as special cases of relations (sets
are relations of one argument). We say that a formula F(v\,',..., vn)
defines a relation R(XI, ..., xn) in S if F strongly separates R from
its complement R—in other words, if F(ai,... an) is provable for ev-
ery ra-tuple 01,...,an such that R(ai,... ,an) holds and is refutable
in S for every n-tuple (ai,... , an) such that ~ jR(ai, . . . , an) holds.
We say that F completely represents R in S if F represents R, and
its negation ~ F represents the complement R. For a consistent
system 5, definability and complete representability are equivalent
(as the reader can easily verify).

Let us note that if a formula F(v-i,V2) defines a relation R(x,y)
in <S and if A is the domain of R (i.e. the set of all a; such that
3yR(x,y)), then F(VI,VZ) enumerates A in S (as the reader can
easily verify). Thus, the domain of a binary relation definable in S
is a set enumerable in S. [If, also, <S is u>-consistent, then the domain
of a definable relation of S is representable in «S].

Exact Separation. We will later have need of the following notion:
We say that a formula F(VI) exactly separates A from B in S if F(v\)
represents A and ~ F(v\) represents B. This means that F(n) is
provable if n £ A, refutable if n € -B, and undecidable if n is in
neither A nor B.

II. Arithmetic, SQ and R.E. Relations

§4. Arithmetic, S0 and R.E. Relations. We now con-
sider formulas whose only function symbols are + (plus), X (times)
and ' (successor) and whose only predicate symbol (other than iden-
tity) is < (less than or equal to). A formula F(VI,. .., vn) is said to
express the set of all n-tuples (ai,. . . , an) such that -F(ai,..., an) is a
true sentence (true, that is, under the standard interpretation). We
call a formula F(VI, ..., vn) correct if for every n-tuple (ai,. . . , an),



9Many equivalent definitions of recursively enumerable are to be found in the literature.
The Si-definition fits in best with the purposes of this volume and is the one we
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the sentence F(ai,... ,an) is true. We let N be that first-order sys-
tem whose axioms are all the correct formulas (this includes all log-
ically valid formulas). Thus, the provable formulas of N are nothing
more than the axioms of TV. The system N is both consistent and
complete (and also w-consistent), but it is not recursively axiomati-
zable (as we shall define this). Of course, a formula expresses that
relation which it represents (and also completely represents) in the
complete system TV. A relation (also a set) is called arithmetic if is
representable in the complete system JV.

So-Relations. For any variable Vj and any variable or numeral c, we
write (Vv» < c)( ) as an abbreviation of Vvj(ui < c D ( ))
and (3v8- < c) as an abbreviation of 3vi(vi < c A ( )). We refer
to (Wj < c) and (3vj < c) as bounded quantifiers.

By an atomic So-formula, we mean a formula of any of the four
forms

where each ci and cj is a variable or a numeral. We then define the
class of So-formulas by the following inductive rules:

(1) Every atomic So-formula is a So-formula.
(2) If F\ and G\ are S0-formulas, then so are

(3) If F is a So-formula, Vi is a variable and c is a numeral or a
variable distinct from vz-, then (Vu; < c)F and (3u; < c)F are
So-formulas.

Thus, in a So-formula, all the quantifiers are bounded. So-formulas
are also called constructive arithmetic. Given a So-sentence (i.e. a
So-formula with no free variables), one can effectively decide whether
it is true or false.

By a S0-relation, (also called a constructive arithmetic relation)
we mean a relation expressed by some So-formula.

Si-Relations. By a Si-formula, we mean one of the form 3v;F,
where F is a S0-formula. Thus, a Si-formula is the unbounded exis-
tential quantification of a S0-formula. And by a Si-relation (or an
r.e. (recursively enumerable)) relation, we mean a relation expressed
by a Si-formula.9



In G.I.T. we gave a proof of the following well-known fact.

Theorem 4.10

(a) Every ^-relation is also Si.
(b) If R(XI,... ,xn,y) is a "Si-relation, then so is the relation

ByR(xi,...,xn,y).
(c) The union and intersection of two 'Si-relations are

T^i-relations.
(d) If R ( X I , . . . ,xn,y,z) is Si, then so is the relation

(By < z)R(xi,...,xn,y,z).
(e) If R ( X I , . ..,xn,y,z) is Si, then so is the relation

(Vj/ < z)R(x!,...,xn,y,z).

Complete details of the proof can be found in G.I.T. The only
tricky case is (e), and the idea is this. Suppose R(XI, ... ,xn,y,z)
is Si. Then it is of the form 3wS(xi,... ,xn,y,z,w), where S is a
S0-relation, and so (Vy < z)BJ(x\,... ,xn,y, z) is the relation

If this relation holds, then for every z and every y < z, there is
a number wy such that S(xi,...,xn,y,z,wy). If we let v be the
maximum of the numbers WQ, • • • , wz, we can rewrite the relation as

which is Si.

Recursive Relations. We define a set or relation to be recursive
if it and its complement are both r.e. A function f(xi,...,xn) is
called recursive if the relation f(xi,... ,£„) = y is recursive. Let
us note that if the relation f(x\,..., xn) = y is recursively enumer-
able, then it must be recursive since the complementary relation
/(xi,.. • , xn) ^ y can be written

Hence, it is r.e. (as can be seen using Theorem 4).

So-Complete Systems. We call <S ^-complete if all true So-sen-
tences are provable in S. This condition implies that all r.e. sets are
enumerable in <S. Suppose S is So-complete and A is an r.e. set.
Then A is the domain of a S0-relation R(xi,X2), and this relation is

accordingly adopt.

"Proposition C, Ch. 4, G.I.T.
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expressed by some So-formula F(VI,VZ). Then F(VI,VI) enumerates
the set A in S (because if n € -A, then R(n,m) holds for some
m. Hence the true So-sentence F(n,m) is provable in 5; whereas if
n 0 A, then for every m, ~ R(n, m) holds. Hence for every m, the
true So-sentence ~ F(n,m) is provable in S).

§5. Axiomatizable Systems. So far we have made no as-
sumptions about the Godel numbering of the expressions of S. Now
it will be necessary to do so.

For any expressions X and Y, by XY we mean X followed by
Y. We let x * y be the Godel number of ExEy. For any number
n, we let num(n) be the Godel number of the numeral n. We now
define a Godel numbering y to be acceptable if the functions x * y
and num(a:) are recursive functions. We, henceforth, assume that
our Godel numbering is acceptable.11

We now define S to be recursively axiomatizable (axiomatizable,
for short) if the set P of Godel numbers of the provable formulas of S
is recursively enumerable. [This definition is actually independent of
which acceptable Godel numbering is chosen, and the definition can
be given without reference to any Godel numbering by using either
the canonical language of Post, the elementary formal systems of
Smullyan, or the algorithms of Markov.]

Now, assuming the Godel numbering is acceptable, it is easily
verified that the function r(x,y) (the Godel number of Ex[y]—which
is the Godel number of Vvi(vi = y D Ex}) is a recursive function of
x and j/12 and, hence, the diagonal function d(x) (which is r(x,x})
is recursive. It easily follows that for any r.e. set A, the set A* (i.e.
d~l(A)) is r.e. Thus if S is axiomatizable, then the set P is r.e.
Hence the set P* is also r.e. If P is r.e., then so is R and, hence, so
is R*. Thus if S is axiomatizable, then the sets P* and R* are both
r.e.

Suppose now that <S is an w-consistent axiomatizable system in
which all true So-sentences are provable. Then all r.e. sets are
enumerable in S. Hence they are representable in S (by the in-
consistency lemma). Also P* is r.e. (since S is axiomatizable). Hence
S must be incomplete by Theorem 1, and so we' have the following
generalization of Godel's theorem:

11 Examples of acceptable (and handy) Godel numberings were given in Ch. 2, G.I.T.
12cf. Ch. 2, G.I.T. for details
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Theorem 5.13 If S is an axiomatizable u>-consistent system in
which all true %0-sentences are provable, then S is incomplete.

§6. Rosser Systems. We call S a Rosser system for sets if
for any r.e. sets A and 5, the set A-B is strongly separable from
B-A in S. More generally, for any positive integer n, we say that
S is a Rosser system for n-ary relations if for any r.e. relations
RI(XI, ... ,xn) and ^(^i) • • • ? x n)) the relation R\-R-z (that is to
say RI A ~ #2) is strongly separable from R^-Ri- We call S a
Rosser system if it is a Rosser system for sets and for relations of
any number of arguments.

If S is a Rosser system for sets, then obviously for any disjoint
r.e. sets A and B, the set A is strongly separable from B in S (since
then A - B = A and B - A = B). The converse also happens to
hold (as we will later see).

Suppose now that S is a simply consistent axiomatizable Rosser
system for sets. Then the sets P* and R* are both r.e., and by
consistency, they are disjoint. R* is then strongly separable from P*
in «S, and by Theorem 3.1, S is then incomplete. And so we have:

Theorem 6. If S is a simply consistent axiomatizable Rosser sys-
tem for sets, then S is incomplete.

§7. The Systems P.A., (Q) and (R). We call a system
Si a subsystem of $3, and we say that £3 is an extension of «Si if
all the provable formulas of <Si are provable in £2. We now consider
some significant axiomatizable subsystems of N—the system P.A.
(Peano Arithmetic), the subsystem (Q) of P.A. (a variant of one due
to Raphael Robinson) and the further subsystem (K) (also due to
Robinson).

We start with the system (Q) (which will play a key role in this
volume). It has only finitely many non-logical axioms—namely the
following nine. [We are using ' for the successor function.]

13Th. A, Ch. 5, G.I.T.



The System P.A. The non-logical axioms of P.A. are infinite in
number. They consist of the nine axioms of (Q) together with the
infinitely many axioms of scheme Nw below—one for each formula
F(VI) (which may contain other free variables than v\). These are
the so-called induction axioms.

"see Part II, Chapter 5, G.I.T. for details
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The system P.A. appears, on the surface, to be a complete system,
but it turns out not to be (as we will see).

The System (j?). This system also has infinitely many non-logical
axioms—all formulas of one of the following five forms (m and n are
any numbers).

One importance of the system (R) is that it is So-complete—
indeed the system (-Ro) consisting of fti-fi.4 is So-complete. We
call a So-sentence correctly decidable in (jRo) if it is either true and
provable in (Ro) or false and refutable in (.Ro)- An easy induction on
degrees of So-sentences (i.e. number of occurrences of logical con-
nectives and quantifiers) shows that all So-sentences are correctly
decidable in (R0)

14. Hence all true So-sentences are provable in
(Ro) (and hence in (R)).

The next important fact about (R) is that it is a subsystem of
(Q) (and hence of P.A.), which makes (Q) (and P.A.) So-complete.
Briefly, the proof is this: Using JV3 and JV4, one shows by mathe-
matical induction on m that all sentences of axiom scheme fii are
provable in (Q). Having established this, one uses 7V5 and JV6, and
by mathematical induction on m, one shows that all sentences of fi2
are provable in (Q). As for fts, we use NI and N?, and show by math-
ematical induction on k that for all positive numbers p, the sentence
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k ^ k + p (and hence also k + p ^ k) is provable in (Q}. As for ^4
using Nj and TVg, one shows by mathematical induction on n that
v\ < n = (vi = 0 V ... V vi < n) is provable in (Q). At this point, we
see that (-Ro) is a subsystem of (Q) (in fact, of the subsystem (Qo)
of (Q) consisting of just Ni~Ns). As for ^5, this is immediate from
JVg, and so (R) is a subsystem of (Q).15 We thus have:

Theorem 7. The system (R) is a subsystem of (Q) which, in turn,
is a subsystem of P.A. These systems are all ^Q-complete (in fact,
so are (Ro) and (Qo)).

The Axiomatizability of P.A. In G.I.T., Chapters 3 and 4, we
proved the axiomatizability of P.A. A minor modification of the proof
yields the axiomatizablity of the systems (Q) and (R}- The proof is
lengthy (although simpler, we believe, than the standard proofs) and
will not be repeated here.

§8. More on Rosser Systems. The following theorem is of
fundamental importance:

Theorem 8. The systems (R), (Q) and P.A. are Rosser systems.

This follows from the So-completeness of these systems and from
lemma S below. We call a system S an extension of (^4 and J7s if all
instances of ^4 and 1)5 are provable in «S.

Lemma S.16 Suppose S is an extension of ^4 and ^5. Then for
any relations Ri(xi,...,xn) and R^XI,.. . ,xn), if RI and #2 are
enumerable in <S, then RI — Ry is strongly separable from R% — RI
in S. More specifically, if F I ( X \ , . . . , xn,y) and F^(XI, . . . , xn, y) are
formulas that respectively enumerate the relation R\(x\, . . . , xn) and
RZ(XI , . . . , xn), then the formula

15Details of the proof can be found in the proofs of Proposition 3 and 4, Chapter 5,
G.I.T.

16 Separation lemma, Ch. 6, G.I.T.

strongly separates RI — R2 from J?2 — -Ri • [Alternately,

strongly separates R^ — R\ from R\ — R^.]

Lemma S is an easy consequence of the following lemma
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Lemma S0. Given two formulas Fi(y) and .F2(y), let X be the sen-
tence 3y(Fi(y) A (Vz < y) ~ -^2(2)). Suppose S is an extension of
^4 and fis. Then for any number n:

(1) If FI(TC) is provable and if F2(6),. ..,F2(ra) are all refutable,
then X is provable.

(2) If -F2(ra) is provable and if Fi(0),. . . , -Fi(ri) are all refutable,
then X is refutable.

Proof of Lemma So- Suppose all instances of fi4 and O5 are prov-
able in S.

1. Suppose .Fi(ra) is provable and JP2(0), . . . , F^(n) are all refutable.
From the latter it easily follows by f!4 that (\/z < n) ~ F^(z)
is provable. Hence F\(n) A (V;r < ra) ~ F<z(z} is provable, and
by first-order logic, 3y(Fi(y} A (Vz < y) ~ -F2(-^)) is provable.
Thus X is provable.

2. Suppose F2(ri) is provable and ^i(O), . . . , F\(n) are all refutable.
Then by £l<i,(Vy < n) ~ ^i(j/) is provable. Hence the open
formula y < n D ~ -fi(y) is provable, and Fi(y) D ~ (y < n) is
provable. By ^5, F\(y) D n < i/ is provable.

§9. The Non-axiornatizability of N] Tarski's Theorem.
We shall call a system S arithmetic if the set of Godel numbers of

is provable (since F<z(ri) is provable),

is provable,

is provable, and

is provable; and X is refutable.

From Theorem 8 and Theorem 6 we have:

Theorem 8.1. Every simply consistent axiomatizable extension of
(R) is incomplete.

The above theorem has sometimes been referred to as the "Godel-
Rosser incompleteness theorem".



16 Chapter 0. Prerequisites

the provable formulas of S is an arithmetic set. Since every r.e.
set is obviously arithmetic, then every axiomatizable system is also
an arithmetic system. And now we have the following result of Al-
fred Tarski:

Theorem 9. The system N is not even arithmetic let alone axiom-
atizable.

Since N is complete, Theorem 9 follows from the following result:

Theorem 9". Every arithmetic subsystem of N is incomplete.

Proof of Th. 9". Suppose <S is an arithmetic subsystem of N. Then
the set P of Godel numbers of the provable formulas of $ is arith-
metic. Hence its complement P is arithmetic, and the set P* is
arithmetic. [For any arithmetic set A, the set A* is arithmetic since
A* = d~l(A), and d(x) is a recursive function. Hence the relation
d(x) = y is arithmetic, and d~l(A) is thus the set of all n satisfying
the arithmetic condition 3y(d(n) = y A y 6 A).] Since the set P*
is arithmetic, it is represented in N by some formula H(VI). Then
by Lemma A, H[h] is a Godel sentence for P with respect to N, i.e.
H[h] is true iff its Godel number is in P. Thus H[h] is true iff it is
not provable in S. Thus the sentence is either true and not provable
in S or false and provable in S. The latter alternative is ruled out
by the assumption that S is a subsystem of N. Thus H[h] is true
but not provable in S. Since H[h] is true, then ~ H[h] is false and
not provable in «S, and H[h] is an undecidable sentence of S.

Three Incompleteness Proofs for Peano Arithmetic. We now
have three different methods of showing the incompleteness of Peano
Arithmetic.

I. Assuming that all provable sentences of P.A. are true, P.A. is
then a subsystem of N. Since P.A. is also axiomatizable, it is
incomplete by Theorem 9.

This proof is the simplest of all (and apparently the least well
known). It doesn't involve proving that P.A. is a Rosser system,
nor that P.A. is So-complete. This is the first proof we gave in
G.I.T. However, this proof involves the strongest metamathematical
assumption of all, namely that all provable sentences of P.A. are
true.

II. Under the weaker metamathematical assumption that P.A. is
w-consistent, we have Godel's original method: Since P.A. is
axiomatizable and Eo-complete, (assuming u-consistency) it is
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then incomplete by Theorem 5.

This proof does involve showing that P.A. is So-complete (which
we did by showing it to be an extension of (R)).

III. Under the still weaker assumption that P.A. is simply consis-
tent, since P.A. is an axiomatizable extension of (R), it is in-
complete by Theorem 8.1. This is Rosser's proof.

Other incompleteness proofs for P.A. will follow from results proved
in the present volume.

§10. More on Separation. Consider two r.e. sets A and B.
Then there are SQ- relations, Ri(x,y) and R%(x,y), such that A is
the domain of RI and B is the domain of ^2- Let A' be the set of
all n such that

Let us say that y puts n in A iff Ri(n,y) and that y puts n in B
iff Ri(n,y). Then n € A iff some j/ puts ra G A, and n € I? iff some
y puts n in B. Let us say that n is put in A before n is put in B if
there is some y that puts n in A and no z < y puts n in 5. The set
A' is then the set of all n such that n is put in A before it is put in
B; B' is the set of all n such that n is put in B before it is put in A.

The sets A' and B' are clearly disjoint, and A — B C A' and
B — A C B'. Also, the sets A' and B' are easily seen to be r.e. (this
follows from the various parts of Theorem 4). And so we have:

Theorem 10.17 For any two r.e. sets A and B, there are disjoint
r.e. sets A' and B' such that A - B C A' and B - A C B'.

Suppose now that 5 is a system such that for any two disjoint r.e.
sets A and J?, the set A is strongly separable from B in S. Now
suppose A and B are r.e. sets, not necessarily disjoint. Then by
Th. 10, there are disjoint r.e. sets A' and B' such that A - B C A'
and B — A C B'. There is then a formula -P(vi) which strongly
separates A' from B' in <S, and it is obvious that ^(^i) strongly
separates A — B from B — A in S. And so we have:

17Th. 5, Ch. 6, G.I.T.

and let B' be the set of all n such that
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Theorem 10.1.18 If every disjoint pair of r.e. sets is strongly sep-
arable in S, then S is a Rosser system for sets.

Of course, Theorems 10 and 10.1 also hold for n-ary relations
where n > 1. The reader can easily verify this.

§11. Definability of Functions in S. The notion of afunc-
tion being definable in S is defined differently by different authors.
We will say that a formula F(VI, ... ,vn, vn+i) weakly defines a func-
tion /(aii, . . . ,£„) if it defines the relation f(x\, . . . ,a;n) = y. We will
say that F(VI, . . . ,vn,vn+i) strongly defines, or more briefly, defines
/(»!, . . . , xn) in S if, in addition, for any numbers a\, . . . , an, b such
that /(ai, . . . , an) = 6, the sentence

"Corollary of Th. 5, Ch. 6, G.I.T.
19Th. 3, Ch. 8, G.I.T.

is provable in <S.
In G.I.T. (Lemma to Theorem 3 of §3, Ch. 8) we proved:

Lemma. If S is an extension of ^4 and fi5, then every function
weakly definable in S is strongly definable in S.

The idea behind the proof is that if S is an extension of £^4 and
£15 and if ^(^1, ̂ 2) is a formula that weakly defines the function f ( x )
in S, then the formula

will strongly define /(#) in S.
The reader should be able to prove this as an exercise (or consult

G.I.T. for details).
If S is a Rosser system, then it is obvious that all recursive re-

lations are definable in S. Hence all recursive functions are weakly
definable in S. If also «S is an extension of J14 and fi5, then by
the above lemma, all recursive functions are strongly definable in S.
Since (R) is a Rosser system and is also an extension of ^4 and £^5,
we thus have:

Theorem II.19 All recursive functions are strongly definable in (R)
(and, hence, in every extension of (R), in particular in the systems
(Q) and P.A.).
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Admissible Functions. We call a function f ( x ) admissible in S
if for every formula G(VI), there is a formula H(VI) such that for
every number n, the sentence H(n) = G(f(n)) is provable in 5.
Now suppose f ( x ) is strongly definable in S by a formula F(VI,VZ).
Then, given a formula G(VI), if we take H(VI) to be the formula

III. Shepherdson's Theorems

We now turn to some results of John Shepherdson that we considered
in G.I.T. and which will play an important role in this volume.

At the time of Godel's proof, the only known way of showing
that all r.e. sets are representable in P.A. involved the assumption
of cj-consistency. Well, in 1960, A. Ehrenfeucht and S. Feferman

20cf. Th. 2, Ch. 8, G.I.T. for details
21 Th. 2, Ch. 8, G.I.T.
22Corollary of Th. 2, Ch. 8, G.I.T.

it is not difficult to verify that for any n, the sentence

is provable in S20 and so we have:

Theorem 11.1.21 // /(#) is strongly definable in S, then f ( x ) is
admissible in S.

Corollary. All recursive functions of one argument are admissible
in (R) (and hence in every extension of (R)).

The significance of admissibility is this: Suppose that for all n,
H(n) = G(f(ri)} is provable in S. Then if A is the set represented
in S by G(VI), and B is the set represented by ~ G(v\), then H(VI)
clearly represents f~l(A), and ~ H(VI) represents f~\B}. Then by
Theorem 11.1 we have:

Theorem 11.2.22 Suppose f(x) is strongly definable in S (or even
admissible in S). Then

(1) If A is representable in S, then so is f~l(A).
(2) I f ( A , B ) is exactly separable in S, then so is (/~1(A),/~1(J?)).
(3) If A is definable in S, then so is f~l(A).
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showed that all r.e. sets are representable in every simply consistent
axiomatizable extension of the system (R). In fact their proof showed
the following stronger result:

Theorem E.F. If S is any simply consistent axiomatizable Rosser
system for sets in which all recursive functions of one argument are
strongly definable, then all r.e. sets are representable in S.

Their proof combined a Rosser-type argument with a celebrated
result of John Myhill which we will study in this volume.

We call S an exact Rosser system for sets if every disjoint pair
of r.e. sets is exactly separable in S. In 1960, H. Putnam and
R. Smullyan proved the following strengthening of the Ehrenfeucht-
Feferman theorem.

Theorem P.S. If S is a consistent axiomatizable Rosser system for
sets in which all recursive functions of one argument are strongly
definable, then S is an exact Rosser system for sets.

Of course Theorem P.S. shows that every consistent axiomatizable
extension of (R) is an exact Rosser system for sets. The proof of
Th. P.S. involved a "double analogue" of Myhill's theorem that we
will study in this volume.

Now, in 1961, Shepherdson gave a remarkedly direct proof that
every axiomatizable consistent extension of (R) is an exact Rosser
system for sets. He proved the following two theorems:

Theorem Si—Shepherdson's Representation Theorem. If
S is a consistent axiomatizable Rosser system for binary relations,
then every r.e. set is representable in S.

Theorem 82—Shepherdson's Exact Separation Theorem.
Under the same hypothesis, S is an exact Rosser system for sets.

The hypothesis of the Shepherdson theorems is apparently incom-
parable in strength with the hypothesis of the E.F. and P.S. theo-
rems. Both yield alternative proofs that every consistent axiomatiz-
able extension of (R) is an exact Rosser system for sets.

We now turn to the proofs of the Shepherdson theorems (and shall
in fact prove some slightly stronger results that will be important for
this volume).

§12. Shepherdson's Representation Lemma. For any
expression E and any numbers m and n, we let E[m, n] be the ex-
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pression MV<Z(VI = m D Vvi(vi = n D E}). If E is a formula in which
vi and #2 are the only free variables, then .E[m,n] is a sentence log-
ically equivalent to E(m, ra), and so E[m, n] is then provable in S iff
J5(m,n) is provable.

We now define the relation P" to be the set of all ordered pairs
(m,ra) such that En(m,n) is provable in «S, and R$ to be the set of
all (m,n) such that En(m,n) is refutable in S. It is easily verified
that if S is axiomatizable, then P" and .fl" are both r.e. relations.

Lemma 1—Shepherdson's Representation Lemma. For
any set A, if the relation x G A A ~ P"(», y) *'« weakly separable
in S from the relation P$(x,y) A x £ A, then A is representable in
S.

We will, in fact, need the following stronger lemma (for purposes
of this volume).

Lemma 1*. For any relation R(x,y), if Eh(vi,vy) is a formula that
weakly separates in S the relation R(x,y) A ~ P"(X,J/) from
P$(x,y) A ~ R(x,y), then for every number n: R(n,h) iff Eh(n,h}
is provable in S.

Note. Lemma 1 follows from Lemma 1* by taking R(x,y} iff x € A
(regardless of y).

Proof of Lemma 1*. Assume hypothesis. Then for all n and m:

(1) (R(n,m) A ~ P"(n,m)) D Eh(n,m) is provable (in S)
(2) (P"(n, m) A ~ R(n,m)) D Efi(n,m) is not provable.

Taking h for m we have:

From (1)', it follows that R(n,h) D P*(n,A). From (2)' , it fol-
lows that P"(n,/i) D R(n,h). Therefore, R(n,h) iff P^(n,h), and so
R(n, h) iff Eh(n, h) is provable in S.

Lemma 1 easily yields Theorem Si, and, in fact, Lemma 1* yields
the following stronger result:

Theorem SJ. Suppose S is a consistent axiomatizable Rosser sys-
tem for binary relations. Then for any r.e. relation R(x,y), there is
a formula Eh(vi,vi) such that for all n:
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Eh(n,h} is provable in S <-> R(n,h).

§13. Shepherdson's Exact Separation Lemma.

Lemma 2—Shepherdson's Exact Separation Lemma. For
any disjoint sets A and B, if the relation

is strongly separable in S from the relation

and if S is consistent, then A is exactly separable from B in S.

We will need the following stronger lemma:

Lemma 2*. For any disjoint relations M\(x,y} and M^x^y), if

is strongly separated in S from

by a formula Eh(vitV2~), and if S is consistent, then for any number
n:

(a) Eh(n,h) is provable «-> Mi(n,h)
(b) Eh(n,h) is refutable «-»• Mz(n,h).

Proof. Assume hypothesis. Then for all n:

(1) [(Mi(n,J») V flB(n,/0) A ~ (M3(n,fc) V P8(n,/i))] D Eh(n,h) is
provable D P"(n,/i)

(2) [(Afa(n, /i) V Ptt(n, h)) A ~ (Afi(n, fc) V PJ(n, fe))] D l?fc(n, h) is
refutable D J2"(n,ft)

Since MI and Af2 are assumed disjoint and R^ and P" are disjoint
(by our assumption that 5 is consistent), conclusions (a) and (b)
follow from (1) and (2) by prepositional logic.

From Lemma 2* we easily get the following strengthening of The-
orem 82:

Theorem 82 • Suppose S is a consistent axiomatizable Rosser sys-
tem for binary relations. Then for any disjoint r.e. relations Ri(x,y)
and R-2(x,y), there is a formula E^VI^V^) such that for all n:
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(a) Eh(n,h) is provable in S «-» Ri(n,h]
(b) Eh(n,li) is refutable in S «-» Ri(n,K).

Exercise. Let R(x,y) be an r.e. relation and for any number n, let
Rn be-the set of all numbers x such that R(n, x). Prove that for any
consistent axiomatizable Rosser system for binary relations, there is
a number h such that Rh is represented in the system by a formula
whose Godel number is h. [Hint: Use Lemma 1*.]



Chapter I

Recursive Enumerability and Recursivity

Having proved that Peano Arithmetic is incomplete, we can ask an-
other question about the system. Is there any algorithm (mechanical
procedure) by which we can determine which sentences are provable
in the system and which are not? This brings us to the subject of
recursive function theory, to which we now turn.

We are denning a relation (or set) to be r.e. (recursively enumer-
able) iff it is S1? and to be recursive iff it and its complement are r.e.
An equivalent definition of recursive enumerability is represent ability
in some finitely axiomatizable system (as we will prove). Many other
characterizations of recursive enumerability and recursivity can be
found in the literature (cf., e.g., Kleene [1952], Turing [1936], Post
[1944], Smullyan [1961], Markov [1961]), but the Si-characterization
fits in best with the overall plan of this volume. The fact that so
many different and independently formulated definitions turn out to
be equivalent adds support to a thesis proposed by Church—namely
that any function that is effectively calculable in the intuitive sense
is a recursive function. Interesting discussions of Church's thesis can
be found in Kleene [1952] and Rogers [1967].

In this chapter, we establish a few basic properties of recursive
enumerability that will be needed in just about all the chapters that
follow.

/. Some Basic Closure Properties

§1. Some Closure Properties. It will be convenient to re-
gard sets as special cases of relations (sets are thus relations of one
argument or relations of degree 1).

24
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It will be convenient to use the A-notation "Aa;i,.. . ,xn : (...)",
read "the set of all n-tuples («!,..., xn) such that (...)". For exam-
ple, for any relation R(XI, #2, #3)? the relation Xx-^x^x^: R(x^ x2, x\)
is the set of all triples (ari,^,^) (°f natural numbers) such that
R(x2,x%,xi) holds. We sometimes write "a;: ( • •• )" f°r "Ao:: ( • • • ) " •

Explicit Definability. We say that a relation S(xi,... ,xn) is ex-
plicitly definable from a relation R(XI, ... ,Xk) if S(xi,..., xn) can
be written in the form

where each £,- is either one of the variables x-i,...,xi, or is a natural
number.

For example, if R is a relation of degree 3, and S is the set of
all quintuples (xi,x<2,#3,#4,#5) such that R(x4,xi,7), then S is ex-
plicitly definable from R (since S(x\,X2,X3,X4,x§) can be written as
\Xi,X2,X3,X4,X5: R(x4,Xi,7}}.

Suppose 5 is explicitly definable from R, and R is Si. Then it is
obvious that S is also Si. For the above example, if F(vi,V2,v3) is
a Si-formula expressing the relation -R^i,^,^), then the relation
5(21,0:2, #3, #4, £5) is expressed by the Si-formula

It is also true that any relation explicitly definable from a So-relation
is SQ, and any relation explicitly definable from an arithmetic rela-
tion is arithmetic.

We say that a class C of relations is closed under explicit defin-
ability if for every R € C, all relations explicitly definable from R
are also in C.

We would like to remark that the notion of explicit definability can
be defined without use of A-notation as follows. For every positive
n and every positive i < n, let Pf be the function of n arguments
defined by the condition

We call these functions P/1 projection functions (they are sometimes
called identity functions). For every positive n and any number a,
let C™ be the function of n arguments defined by the condition

The functions C™ (for various n and a) are called constant functions.
Then we can say that a relation 5(#i,... ,Xk) is explicitly definable
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from R(XI, ..., xn) if there are functions

each of which is either a projection function or a constant function,
such that for all xi,...,Xk'

For example, suppose S = \x\x^xzx^: $(2:3,7, £2)- Then

Unions and Intersections. For any two relations R\(XI, ... ,a;n)
and R?(XI, • • • 5 xn)i by R\ U R% (the union of R\ and R^), we mean

and by the intersection R\ n R? of Ri,R%, we mean

We know from Th. 4, Ch. 0 that if R\ and R% are both r.e., then so
are the relations R\ U R^ and R\ n R%.

Quantifications. For any relation R(XI ,..., a;n, y) by its existential
quantification, we mean

and by its universal quantification, we mean

We know from Chapter 0 that the existential quantification of an
r.e. relation is r.e. (because existential quantifications of S-relations
are S, and S-relations are the same as EI-relations). The universal
quantification of an r.e. relation is in general not r.e. (as we will see).

Finite Quantifications. By the finite existential quantification of
a relation R(x\,..., xn, y, z), we mean

By the finite universal quantification of J?, we mean

By Th. 4, Ch. 0, if R is r.e., then the finite existential quantification
of R and the finite universal quantification of R are both r.e.
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Collecting together the facts we now know, we summarize them
as:

Proposition A. The class C of r.e. relations is closed under ex-
plicit definability, unions, intersections, existential quantifications,
and finite universal (and existential) quantifications and contains
the relations x + y = z, x • y — z, x — y and x ^ y.

Exercise 1. (a) Prove that if C is any class of relations having the
closure properties above, then C must contain all r.e. relations.
[Hint: Use induction on degrees of S-formulas].

(b) Using (a) and Proposition A, show that a relation is r.e. if
and only if it belongs to every class C having the above clo-
sure properties. [This provides a purely set-theoretic charac-
terization of r.e. relations; this characterization is not stated
with reference to the metamathematical notions of formula
and truth].

Exercise 2. Give similar set-theoretic characterizations of S0-rela-
tions and arithmetic relations.

§2. Recursive Relations. We recall that we are calling a
relation recursive iff it and its complement are r.e.

Proposition B. The class of recursive relations is closed under com-
plementation, union, intersection, finite quantifications, and explicit
definability, and it contains the relations x + y = z,x-y = z,x = y
and x ^ y.

Proof.

1. Suppose R is recursive. Then R and R are both r.e. and R and
« K ~

R are both r.e. (since R= R)- so R is recursive.
2. Suppose _Ri__and R% arej~ecursive relations of the same degree.

Then RI, RI, R% and R% are all r.e^, and_J2i U R-2 is r.e. by
Proposition A. Its complement is RI n R?, which is r.e. by
Proposition A. Thus RI U _R2 is recursive, and RI n R2 is r.e.
by Proposition A. Its complement is RI U -R2, which is r.e. by
Proposition A. Hence RI D R2 is recursive.

3. Suppose R(xi,...,xn,y,z) is recursive. Since it is r.e., by
Proposition A, the relation (3z < y)R(xi,... ,xn,y,z) is r.e.
Since the relation R(XI,. ..,xn,y,z) is r.e., then by Proposi-
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tion A, so is the relation (V^ < y)R(xi,...,xn,y,z), but this
is the complement of the relation (3z < y}R(x\,... ,xn,y, z).
Therefore the relation (3z < y)R(x\,... ,xn,y,z) is recursive.
The proof that the relation (\/z < y}R(x\,..., xn, y, z) is recur-
sive is similar.

4. Suppose R(XI, ... ,Xk) is recursive, and S is the relation
Xxi,..., xn: R(£i,... ,fjt) (each & is either one of the variables
x i , . . . , xn or a constant). Since R is r.e., so is S (by Proposi-
tion A.) Also S is the relation A^i , . . . ,xn : R(£i,... ,£ fc)> and
since R is r.e., so is S. Thus 5 is recursive.

5. Since the functions x + y and x • y and the identity function are
r.e., then they are recursive.

§3. Some Consequences.

Proposition 1. Suppose /i(a;i, . . . ,Xn), • • • ,fk(%i, • • • j^n) ore recur-
sive. Let R(x\, . . . , Xk) be any relation, and let S(x\, . . . , xn) be the
relation

the function g ( f i ( x i , . . . ,xn), . . . , f k ( x i , . . . , ««)) is recursive.
(b) For any recursive function /(#!,. . . ,xn) and any r.e. set A,

the relation f(xi,...,xn) £ A is r.e. If A is recursive, then

(1) If R is r.e., then so is S.
(2) If R is recursive, then so is S.

Proof. S(xi,...,xn) holds iff

If R is r.e., it then easily follows from Proposition A that S is r.e.
Also S(xi,... ,xn) iff

so if R is r.e., then so is S. Therefore, if R is recursive, then so is
S.

Proposition 2. (a) For any recursive functions
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the above relation is recursive.
(c) For any recursive function f ( y ) and any r.e. relation

R(XI,... ,xn,y), the relation R ( X I , . .. ,xn,f(y)) is r.e. If R
is recursive, then so is the relation R(XI, ... ,xn,f(y)).

(d) For any r.e. relation R ( X I , . .., xn) and any recursive function
f(xi,...,xn), the set of all numbers /(xi,... ,xn) such that
R(XI, ... , xra) is an r.e. set.

Proof, (a) follows from (2) of Proposition 1 taking for R the recursive
relation g(xl,...,xk) - y.

(b) follows from Proposition 1, taking R to be the set A.
(c) follows from Proposition 1, since R ( X I , . .. ,xn,f(y)) can be

written as

where /(#) is the identity function (which is obviously recursive).
As for (d), let A be the set of all numbers f(xi,..., xn) such that

R(XI, ..., Xn). Then for any number x, we have

Proposition 3. // R(x\,... ,xn,y) is r.e. (recursive), then the re-
lations

are r.e. (recursive).

Proof. Given a relation R ( X I , . .. ,#„,?/), let S be the set of all (ra+2)-
tuples (xi,...,xn,y,z) such that R(XI, ... ,xn,y). Then 5 is explic-
itly definable from R and

If R is r.e. (recursive), then so is S. Hence, so is

and

The proof for (Vz < y)R(xi,..., xn, z) is similar.

Proposition 4. If R(XI, ... ,xn,y) is r.e. (recursive), then so are
the relations
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Proof.

(1) (3z< y)R(xi,...,xn,z) <-»• (3z < y)(R(xi,... ,xn,z) A z < y).
, . (V* < y)R(xl,...,xn,z)<->(Vz < y)(z < y D R ( X I , . . . ,xn ,z))
{ ) »(V*<y)(z = yVR(xi,...,xn,zy

The rest of the proof is easily obtained by using Propositions A
and B.

Proposition 5. If R(x\,... ,xn,y, z) is recursive, then for any re-
cursive function /(#), the relation

is recursive.

Proof. Define S(xi,... ,xn,y) iff (3z < f(y))R(xi,... ,xn,y,z). Then:

(1) S(x-i,.,.,xn,y) <-»• 3w(w = /(t/) A(3z < w)R(xl,... ,xn,y,z),
(2) S(xi,...,xn,y) <-» 3w(w = f(y)A(Vz < w) ~ R(xi,...,xn,y,z).

From (1) it easily follows (using earlier propositions) that if R is
i.e., then so is S. From (2), it follows that if R is r.e., then so is S.
Therefore, if R is recursive, then so is S.

Exercise 3. Show that if R(XI, ... ,xn,y,z) is recursive, then for
any recursive function /(#), the relation

is recursive.

Regular Relations. We shall call a relation R(XI, ..., xn, y) regu-
lar if for every x-i,... ,xn there is at least one y such that
R(XI, ..., #„, y). For a regular relation R(x\,..., xn,y), by
HyR(xi,...,xn,y), we mean the smallest number y such that
R(xi,...,xn,y).

Proposition 6. //J?(xi,..., xn, y) is recursive and regular, then the
function fj,yR(xi,. ..,«„, y) (as a function ofx\,..., xn) is recursive.

Proof. Suppose R is recursive and regular. Let

/(«!,..., a;n) = pyRfa,..., xn,y).

Then for all x\,... ,xn and y:

f(x\,...,xn) -y+* [R(xi,...,xn,y)A(Vz <y)~ R(xi,...,xn,z)].
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Since R and R are both r.e., then the relation

must be r.e. (Why?) Hence /(xi,... ,xn) is a recursive function.

Proposition 7.

(1) For any r.e. relation R ( X I , . .. ,xn, y\,..., y^) and any numbers
ai,...,ak, the relation R(XI, ... ,zn,ai,... ,a&) (as a relation
among x\,..., xn) is r.e. {In \-notation, this relation is written:
\x\...xn : R(xi,...,xn,ai,...,ak).J

(2) For any recursive function f(x\,... ,a:n, j/1}... ,j/fc) and num-
bers ai,...,ak, the function /(a?i,... ,xn,ai,... ,«&) zs recur-
sive. Also for any numbers b\,..., bn, the function /(6j,.. . , bn,
y\ i • • • i Dk) (as a function of y\,..., yk) is recursive.

(3) For any r.e. relation R(x,y), its inverse R(y,x) [In \-notation,
the inverse is written: Xx,y: Ry,x] is r.e.

(4) For any recursive function f(x,y), the function f(x,x) is re-
cursive.

Proof. In each case, the new relation (or function) is explicitly defin-
able from the old one.

//. Recursive Pairing Functions

§4. Recursive Pairing Functions. By a recursive pairing
function, we mean a 1-1 recursive function J(x,y) such that there
exist recursive functions K(x) and L(x) such that for all x,

We recall that a function f ( x , y ) is called 1-1 if for all numbers
Xi,yi,x2 and j/2, if /(zi,2/i) = /(a^.ya), then xl - z2 and ̂  = y2.

There are many ways to construct recursive pairing functions. The
standard method is to use Georg Cantor's enumeration of all ordered
pairs of natural numbers, which is this: We first take all ordered pairs
(x,y) whose sum is 0 (there is only one such pair, viz. (0,0)). Then
we take all pairs (a;, y ) whose sum is 1; there are only two such pairs,
and we take them in the order (0,1), (1,0). Then we take all ordered
pairs whose sum is 3 in the order (0,3), (1,2), (2,1), (3,0), and so
forth. Thus (0,0) is the Oth term of our enumeration, and for any
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ra, if (x, y) is the nth term, then the (n + l)th term is

The first 13 terms of the enumeration are (0,0), (0,1), (1,0), (0,2),
(1,1), (2,0), (0,3), (1,2), (2,1), (3,0), (0,4), (1,3), (2,2), (3,1),
(4.0). We then define J(x,y) to be that number n such that (x,y)
is the nth element of the enumeration.

One can show that

(see Exercise 4 below), and so the function J(x,y) is recursive. Note
that

Since each number x is J(xi,xz) for exactly one pair (a;i,a;2), we
define K(x) — x\ and L(x) — x%. Then J(Kx,Lx) — J(xi^x^) = a;,
and so J(Kx,Lx} = x.

Also, for any numbers x and y, if we let z = J(x, y), then Kz — x
and Lz — y—in other words, KJ(x,y) = x and LJ(x,y) = y.

Since J(x, y) is recursive, so are the functions Kx and Lx because

and

We thus have:

Proposition 8. There is a 1-1 recursive function J(x,y) and recur-
sive functions Kx and Lx such that for all numbers x and y:

(1) J(Kx,Lx) = x,
(2) KJ(x,y) = x and LJ(x,y) = y.

The functions Kx and Lx are called the inverse functions of
J(x,y).

Corollary. For any recursive function f(x,y), there is a recursive
function 4>(x) such that for all x,y : f(x,y) = <j)J(x,y).

Proof. Let <p(x} — f(Kx,Lx). Then for all x and y:
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Exercise 4. We use the well known algebraic fact that for any num-
ber n, the sum 0 + 1 + h n = \n(n + 1).

(a) In terms of n, how many ordered pairs (a, 6) are there such
that a + 6 = n?

(b) In terms of n, how many ordered pairs (a, 6) are there such
that a + 6 < n?

(c) Given an ordered pair (x,y), state in terms of x, how many
ordered pairs (a, 6) there are such that a+b = x + y and a < x.

(d) Using (a), (b) and (c), show that

Solution.

(a) Obviously there are n + 1 such pairs (viz. (0, n), (1, n — 1),...,
(n,0)).

(b) Since for each m < n, there are m+ 1 ordered pairs (a, b) such
that a + b = m, and there are 0 + 1 + 2H \-n ordered pairs
(a, 6) such that a + b < n. So the answer is \n(n + 1).

(c) The answer is obviously x (the ordered pairs are (0,a; + y),
(M+ </-!) , . . . , (a:-l , j / + l)).

(d) Let n = x + y. The number J(x,y) is the number of ordered
pairs which precede (x,y) in the Cantor enumeration. By (b),
the number of such pairs whose sum is less than n is |n(ra+1).
By (c) the number of such pairs whose sum is n is x. Therefore
the number of such pairs all told is \n(n + !) + £, which is
\(x + y)(x + y + 1) + x.

§5. The Functions Jn(xi, . . . ,xn). For each n > 2, we de-
fine the function Jn(xi, . . . ,«„) by the following inductive scheme:

An obvious induction argument shows that for each n > 2, the func-
tion Jn(%i,..., Xn) is a 1-1 recursive function whose range is the set
N of natural numbers.
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Proposition 9.

(1) For any r.e. set A and any n > 2, the relation

is r.e.
(2) For any r.e. relation R(XI, ... ,Xn), the set of all numbers

Jn(xi,... ,xn) such that -R(xi,... ,xn) is an r.e. set.

Proof. By (&) and (d) of Proposition 2.

Proposition 9 largely enables us to reduce the theory of r.e. rela-
tions to the theory of r.e. sets.

The next proposition will have a nice application in Chapter 3.

Proposition 10. For any positive integers m and n and any r.e.
relation R(XI, ... ,xm, j/i,... ,t/n) ofm+n arguments, there is an r.e.
relation M(x, ?/) such that for all numbers x\,..., xm and y\,..., yn :

R(XI,. .., xm, 2/1, . . . , yn) <-> M( Jm(x-L,..., xm), Jn(yi,..., ?/„)).

Proof. Define M(x,y) to hold iff there are numbers a? i , . . . ,xm and
yi,...,yn such that x = Jm(zi,... ,zm), y = Jn(yi,...,yn) and
R(XI,. .. , £m , t / i , . . . , yn). Since the functions Jm and Jn are 1-1,
then it is immediate that

M( Jm(xi,..., xm\ Jn(y-i,..., yn)) «• R(XI,. .., xm, yi,..., yn).

Also, the relation M(x,y) is r.e., since it can be written as

Etoi ...3xm3yi...3yn(x = Jm(x\,... ,xm) A y = Jn(yi,...,yn) A

The Functions K™. For each n > 2, we define the recursive func-
tions K™(x), K^x),..., K%(x) by the following inductive scheme on
n > 2. For n — 2, we let KI(X) = Kx and K%(x) = Lx. Now
suppose n > 2 and the functions K™,... ,K™ are defined. Then we
let K?+l(x) = K?(Kx}, for i < n, and we let K™+\(x} = L(x).
[For example, K%(x) = KKx, K%(x) = LKx and Kj(x) = Lx.] An
obvious induction on n > 2 yields:

Proposition 11. For any n> 2, any n-tuple (zi , . . . , xn), and each
i < n,
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Exercise 5. Prove Proposition 11.

Exercise 6. Using Proposition 11, prove that for any n > 2 and
any x, Jn(K?(x),..., K%(x)} = x.

Proposition 12,, For any n > 2 and any numbers ii,...,in, each
< n, there is a recursive function g(x] such that for every n-tuple
(«!,... ,xn), we have

Proof. Take g(x) to be J(K%x,..., Kfnx). Then use Proposition 11.

Exercise 7. In terms of the functions «/, K and L, give an explicit
description of a recursive function g(x) such that for any quadruple
(#1, #2,3:3, £4),

///. Representability and Recursive Enumerability

§6. We now turn to the study of first order systems. We recall that
a system S is called axiomatizable if the set P of Godel numbers of
its provable formulas is recursively enumerable.

Theorem 1. If S is axiomatizable, then every set and relation rep-
resentable in S is r.e.

We shall first prove Theorem 1 for sets. We use the function r(x, y)
of Chapter 0 ( r ( x , y ) is the Godel number of Ex[y\). We know that
the relation r(x,y) = z is Si; hence the function r(x,y) is recursive.

Now, suppose S is axiomatizable. This means that the set P of
Godel numbers of the provable formulas of S is r.e. Suppose A is a
set representable in S. Then some formula H(VI) represents A in S.
Let h be the Godel number of H(VI). Then for any n, n £ A <-> H[n]
is provable in S <--> r(h,n) 6 P. Since r(x,y) is a recursive function,
so is r(h,x) (as a function of a:), by (2) of Proposition 7. Since A is
the inverse image of P under this function and P is r.e., then A is
r.e. by (b) of Prop. 2. This proves that every set representable in S
is r.e.

To prove this for relations of degree > 2, we first define
E[ai,..., an] to be the expression
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to be E[ai,..., an].] Under either definition, E\a\,..., an] is provable
in <S iff E(ai,...,an) is provable in S. This conclusion holds because
E[ai,..., an] = E(OI, . . . ,an) is logically valid. For each n > I we
define rn(x, y\,..., yn) to be the Godel number oiEx[y~i,..., yn] • [For
n = 1, ri(x,y) = r(x,y).] We leave it to the reader to verify that
for each n > 1, the function rn(x,j/i,... ,?/„) is recursive. Now if a
relation R(x\,..., xn) is represented in <S by a formula H(v\,..., vn)
with Godel number h, then

Since P is i.e., so is R (by (2) of Prop. 1.). We have thus proved
Theorem 1.

Since the systems (R), (Q) and P.A. are axiomatizable, then by
Theorem 1, any set or relation representable in any of these sys-
tems is r.e. Also, by Shepherdson's theorem (or by the Ehrenfeucht-
Feferman theorem, whose proof will be given later), all r.e. relations
are representable in any consistent axiomatizable extension of Robin-
son's system (R), hence in (R) itself and in (Q) and in P.A. (assuming
P.A. is consistent). Since (Q) is finitely axiomatizable, then there is
at least one finitely axiomatizable system in which all r.e. relations
are representable. And so we have:

Theorem 2. For any set or relation R, the following conditions are
all equivalent:

(1) R is recursively enumerable.
(2) R is representable in some finitely axiomatizable system.
(3) R is representable in (Q) (or even in (Qo)).
(4) R is representable in (R) (or even in (Ro))-
(5) R is representable in P.A. (assuming P.A. consistent).

We now see that the systems (R), (Q) and P.A., though of different
strengths with respect to provability, are all of the same strength
with respect to representability (assuming P.A. consistent). The
relations representable in any one of these systems are precisely the
r.e. relations.

[We could alternatively take the expression



III. Representability and Recursive EnumerabHity 37

Theorem 3. If S is consistent and axiomatizable, then every rela-
tion (and set) definable in S is recursive.

Proof. Suppose S is consistent and axiomatizable and that R is defin-
able in S. Since S is consistent, then R is completely representable
in S (cf. §3, Ch. 0). Hence R and its complement are both repre-
sentable in S (by Theorem 1) and so R is recursive.

Corollary. A relation is recursive iff it is definable in (R). The
same is true for the system (Q] and for P. A., assuming P. A. is
consistent.

We now see that the r.e. relations are those representable in
the recursive relations are those definable in (Q). The same is true
for the system (J?).

(Q);



Chapter II

Undecidability and Recursive Inseparability

/. Undecidability

§1. Some Preliminary Theorems. We continue to let 5 be
an arbitrary system, P be the set of Godel numbers of the provable
formulas of S and R be the set of Godel numbers of the refutable
formulas of <S.

Theorem 1. The set P* is not representable in S.

Proof. This is the diagonal argument all over again. If H(v\) repre-
sents P* and h is the Godel number of H(VI), then H[h] is provable
in S iff h £ p* iff d(h) ^ P iff H[h] is not provable in S, which is a
contradiction.

Theorem 1.1. If S is consistent, then P* is not definable in S.

Proof. Suppose P* is definable in <S. If S were consistent, then P*
would be completely representable in «S (cf. §3.1, Ch. 0). Hence P*
would be representable in <S, contrary to Theorem 1. Therefore, if S
is consistent, then P* is not definable in S.

Theorem I.2.1 If the diagonal function d(x) is strongly definable
in <S and S is consistent, then P is not definable in S.

Proof. Suppose d(x) is strongly definable in S. Since P* = d 1(P),
then if P were definable in S, P* would be definable in S (by
Th. 11.2, Ch. 0). Hence <5 would be inconsistent by Theorem 1.1.

Exercise 1. Show that if S is consistent, then R* is not definable
in <S.

iTarski, 1953

38
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Exercise 2. Show that if S is consistent, then no superset of R*
disjoint from P* is definable in S, and no superset of P* disjoint
from R* is definable in S.

Exercise 3. Prove that if S is consistent and if the diagonal function
is strongly definable in S, then no superset of P disjoint from R is
definable in S. [This is stronger than Theorem 1.2.]

§2. Undecidable Systems. A system S is said to be decid-
able (or to admit of a decision procedure) if the set P of Godel num-
bers of the provable formulas of S is a recursive set. It is undecidable
if P is not recursive.

This meaning of 'undecidable' should not be confused with the
meaning of 'undecidable' when applied to a particular formula (as
being undecidable in a given system «S). To ask of a particular for-
mula, whether or not it is decidable, is meaningless except with ref-
erence to a particular system S. On the other hand, the statement
that a given system S is decidable is, so to speak, a mass statement
about the entire set of formulas provable in S. The notion of a sys-
tem S being undecidable is a notion of recursive function theory; the
notion of a sentence being undecidable in a given system S is not.

Theorem 2. If all r.e. sets are representable in S, then the comple-
ment P of P is not r.e.

Proof. Suppose all r.e. sets are representable in S. Suppose P were
r.e. Then the set P* would be r.e. (since P* = d~1(P), and d(x) is a
recursive function). Hence P* would be representable in <S, contrary
to Theorem 1. [We note that P* = P*.]

Remark. The above proof is by contradiction. A more constructive
proof is the following.

To say that P is not r.e. is to say that for any r.e. set A, A ^ P—or
equivalently that for any r.e. set A, there is a number n such that

Well, suppose A is any r.e. set. Then the set A* is also r.e. By
hypothesis, A* is representable in S. Let H(v\) be a formula which
represents A* in 5, and let h be the Godel number of H(VI). Then
H[h] is provable in «S iff its Godel number is in A. So, if n is the
Godel number of H[h], then
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Therefore, for every r.e. set A, P ^ A. Hence P is not r.e.

Theorem 3. If all r.e. sets are representable in S, then S is unde-
cidable.

Proof. Immediate from Theorem 2.

Corollary. The systems (R) and (Q) are undecidable, and P.A. (if
consistent) is undecidable.

The following theorem provides an even weaker condition that a
system be undecidable.

Theorem 4. If all recursive sets are representable in S, then S is
undecidable.

Proof. Suppose all recursive sets are representable in S. If «S was
decidable, then P would bejrecursive. Hence P would be recursive,
P* would be recursive, and P* would be representable in S, contrary
to Theorem 1. Therefore S is undecidable.

Exercise 4. Prove that if the complement of every r.e. set is repre-
sentable in »S, then S is not axiomatizable.

Exercise 5. Suppose all recursive functions of one argument are
strongly definable in S and that S is consistent. Does it necessarily
follow that <S is undecidable?

The existence of an axiomatizable but undecidable system (e.g.
(Q)) yields one proof of a basic result in recursion theory.

Theorem 5. There exists a recursively enumerable set that is not
recursive.

Proof. For «S, the system (Q) and the set P are r.e. (since (Q) is
axiomatizable), but P is not recursive (since (Q) is not decidable).

Many other ways of constructing r.e. sets that are non-recursive
will be provided in later chapters.

Corollary. There exists an arithmetic set that is not r.e.

Proof. Let A be an r.e. set that is not recursive. Since A is r.e., it is
certainly arithmetic; hence A is arithmetic. But A is not r.e., since
A is not recursive.

Theorem Q. If S is decidable, then every set representable in S
is recursive. Stated otherwise, if some non-recursive set is repre-
sentable in S, then S is undecidable.
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Proof. If A is representable in S, then for some number /i,

(cf. proof of Theorem 1). If S is decidable, then P is recursive; hence
A is recursive (by 2 of Proposition 1, Chapter 1).

Discussion. Theorem 6 and Theorem 5 together provide another
proof of Theorem 3. Suppose all r.e. sets are representable in <S. By
Theorem 5, some r.e. set is not recursive. Hence some non-recursive
set is representable in S. Then $ is undecidable by Theorem 6.

Of course, this argument does not establish the stronger result
(Theorem 4) that if all recursive sets are representable in <S, then S
is undecidable.

§3. Non-recursivity and Incompleteness. The existence
of a recursively enumerable set which is not recursive affords an
interesting alternative approach to Godel Incompleteness Theorem.

Theorem 7. If S is a consistent axiomatizable system in which
some non-recursive set is representable, then S is incomplete.

Proof. Suppose that S is a consistent axiomatizable system and that
F(VI) represents A in S where A is not a recursive set. Let B be the
set represented by ~ F(VI). Since S is axiomatizable, A and B are
both r.e. sets (by Theorem 1). Since A is not recursive, B is not the
complement of A. Therefore, some number n is outside both A and
B, and neither F(n) nor ~ F(n) is provable in S.

Discussion. Theorem 7 provides another proof of the incomplete-
ness of P.A. Assuming P.A. is consistent, all r.e. sets are representable
in P.A. Since there exists an r.e. set that is not recursive, some non-
recursive set A is representable in P.A. Hence, P.A. is incomplete by
Theorem 7 (since P.A. is axiomatizable).

The above incompleteness proof, however, is non-constructive.
That is, it shows that there is an undecidable sentence of P.A., but it
gives no indication how to find one. If we could find a number n out-
side the sets A and B of the proof of Theorem 7, then we could find
an undecidable sentence of P.A. (namely H(n)}, but we are given no
recipe for finding such an n.

This situation will be improved in Chapter 4 in which we will
consider an r.e. but non-recursive set C of a very special kind (a
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so-called creative set) having the property that given any formula
H(VI) representing C1, we can actually find a number outside both
C and the set represented by ~ H(v\).

The existence of an arithmetic set that is not r.e. provides yet
another proof of the incompleteness of P.A. (under the assumption
that P.A. is correct). Suppose S is any axiomatizable subsystem of
A/". Let B be an arithmetic set that is not r.e. Since B is arithmetic,
it is expressed by some formula H(v\). The formula H(VI) also
represents some set BQ in S. Since S is axiomatizable, BQ is r.e., and
since B is not r.e., BQ ̂  B. But BQ C B because S is correct (it is
a subsystem of .AT); hence n 6 BQ =£> H(n) provable in S =>• H(n)
true =>• n £ B. Therefore, BQ is a proper subset of B. Hence some
number n in B is not in BQ, and for any such number n, the sentence
H(n) is true but not provable in S. This proves:

Theorem 8. For any axiomatizable subsystem S of N and for any
arithmetic set B that is not r.e. and for any formula H(v\) express-
ing B, there is a number n in B such that H(n) is true but not
provable in S.

Theorem 8, like Theorem 7, has a constructive analogue due to
Kleene which will be given in Chapter 5.

§4. Essential Undecidability. A system S is called essen-
tially undecidable if S is consistent, and every consistent extension
of S (including S itself) is undecidable.

Theorem 9. If all recursive sets are definable in S and S is consis-
tent, then S is essentially undecidable (Putnam, 1957).

Proof. Suppose S is consistent and that every recursive set is defin-
able in S. Let S' be any consistent extension of S. Then all recursive
sets are definable in <S' (because any formula that defines a set in 5
also defines it in S'). But since <5' is consistent, all recursive sets are
then completely representable; hence they are representable in «S'.
Therefore, <S' is undecidable by Theorem 4.

Corollary 1. Every consistent Rosser system is essentially unde-
cidable.

Corollary 2. The system (R) is essentially undecidable. The same
is true with the systems (Q) and P.A. (assuming P.A. is consistent).
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Exercise 6. By the characteristic function CA(X) of a set A, we
mean the function that assigns 1 to every element in A and 0 to every
element not in A (thus CA(%} — 1 <-»• x € A; CA(X] = 0 <-» x £ A).

1. Prove that a set is recursive iff its characteristic function is
recursive.

2. Prove that for any set A, if its characteristic function is defin-
able in S, then A is definable in <S.

3. Using (a), (b) and Theorem 4, prove the following theorem: If
every recursive function of one argument is definable in <S, then
S is essentially undecidable.

//. Recursive Inseparability

§5. Recursive Inseparability. The notion of recursive in-
separability plays a fundamental role in metamathematics and re-
cursive function theory.

Two disjoint sets A and B are called recursively separable if there is
a recursive superset A' of A disjoint from B. [This implies that there
is a recursive superset of B—namely A'—disjoint from A, so the
condition is symmetric]. A and B are called recursively inseparable
(abbreviated R.I.) iff they are disjoint and not recursively separable.

Exercise 7. For any disjoint sets A and B, show that the following
four conditions are all equivalent.

1. Given any r.e. superset A' of A disjoint from B, the complement
of A' is not r.e.

2. Given any disjoint r.e. supersets A' and B' of A and B respec-
tively, there is a number outside A' U B'.

3. Given any r.e. supersets A' and B' of A and B respectively,
there is a number n such that n 6 A' <-» n £ B'.

4. A and B are recursively inseparable.

A system <S is said to be R.I. or an R.I. system, if the sets P and
R are R.I.

Discussion. Here is one reason why recursive inseparability is im-
portant in metamathematics (several other reasons will emerge in
later chapters). Suppose we have an undecidable system S. Then
there is no effective test as to which sentences are provable in S. Now,
suppose the pair (P,R) were recursively separable. This means that
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we could partition the set N of natural numbers into two recursive
sets, A and A, with P being a subset of A and R being a subset of
A. Then given a sentence X, we could take its Godel number n and
effectively test whether n belongs to A or whether it belongs to A. If
we find that n belongs to A, then we will at least know that X is not
provable in S (it is either refutable or undecidable in <S), and, hence,
we won't waste any time trying to prove it in S. On the other hand,
if n turns out to be in A, then we will at least know that X is not
refutable (it is either provable or undecidable). Hence we won't lose
any time trying to disprove it in <5. And so a recursive separation of
P from R, though not as good as decidability, would at least give us
partial information about provability and refutability in the system.
But as we shall shortly see, even this partial information is denied
us for Peano Arithmetic.

Theorem 10. If S is R.I., then S is essentially undecidable.

Proof. Suppose 5 is not essentially undecidable. If <S is inconsistent,
then P — R; hence S is not R.I. Suppose S is consistent. Then
some consistent extension S' of S is decidable. Let P' and R' be the
sets of Godel numbers of the formulas provable and refutable in S'
respectively. Since S1 is consistent, P' is disjoint from R'- hence P'
is disjoint from R. Since S1 is decidable, P' is recursive, so P' is a
recursive superset of P disjoint from R, which means P and R are
recursively separable. Therefore, if S is R.I., then S is essentially
undecidable.

We now wish to show that if all recursive sets are definable in
<S and <S is consistent, then S is not only essentially undecidable
(Theorem 9) but is even R.I. This will follow from our next two
theorems.

Theorem 11. No superset of R* disjoint from P* is definable in S.
Stated otherwise, any definable superset of R* contains an element
o/P*.

Proof. Suppose R* C A and A is defined by H(v\) in S. Let h be
the Godel number of H(VI). We show that h is in both A and P*.

Suppose h $ A. Then H(h) is refutable (since H(VI) defines A);
hence H[h] is refutable and h £ R*, contrary to the fact that R* C A.
Therefore, h must be in A.

Since h € A, H(h) is provable; hence h £ P*. So h is in both A
and P*.
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Theorem 12.(1) For any recursive function 4>(x] and any disjoint
sets A and B, if the sets 4>~l(A) and (j)~l(B) are R.I., then so
are the sets A and B.

(2) For any system S, if the sets P* and R* are R.I., then so are
the sets P and R.

Proof.

1. Let (f>(x) be any recursive function. Suppose A and B are re-
cursively separable. Then there is a recursive superset A' of A
disjoint from B and (f>~l(A'} is a superset of 4>~l(A) disjoint
from <f>~l(B). (Why?) But since A' is recursive, so is 4>~l(A').
Thus <j)~l(A) is recursively separable from <f>~l(B). This proves
that if A and B are recursively separable, then so are <p~l(A)
and 4>~l(B). Equivalently, if 4>~l(A) and (f>~l(B) are recursively
inseparable, then so are A and B.

2. Since the diagonal function d(x) is recursive, P* — d~l(P) and
R* = d-^(R). The result follows from (a).

Theorem 13. If all recursive sets are definable in S and S is con-
sistent, then S is R.I. (Smullyan, 1959).

Proof. Assume hypothesis. Since S is consistent, the pairs (P,-R)
and (P*, R*) are disjoint.

Suppose P* and R* were recursively separable. Then some recur-
sive superset A of R* is disjoint from P*. By hypothesis, A would
be definable in «5, contrary to Theorem 11. Therefore, (P*,jR*) is
R.I. Then by (b) of Theorem 12, the pair (P,R) is also R.I.

Theorem 14. There exists an R.I. pair of r.e. sets.

Proof. (Q) is a consistent axiomatizable system in which all recursive
sets are definable. Therefore, (P,-R) and (P*, R*) are both examples
of an R.I. pair of r.e. sets.

Remark. Several other methods of constructing R.I. pairs of r.e.
sets will be provided in Chapter 5.

§6. Recursive Inseparability and Incompleteness.

Theorem 15. If some R.I. pair (A, B) of sets is strongly separable
in S and S is consistent and axiomatizable, then S is incomplete.
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Proof. Assume hypothesis. Let H(v\) be a formula that strongly
separates A from B in S. Then H(VI) represents some superset A'
of A, and ~ H(v\) represents some superset B' of B. Since S is
consistent, A1 is disjoint from B'. Since S is axiomatizable, the sets
A' and B' are both r.e., and since the pair (A, B) is recursively
inseparable, B' is not the complement of A' (for if it were, A' would
be recursive, hence A' would be a recursive superset of A disjoint
from B). Therefore there is some n outside both A' and B'. Hence
H(n) is neither provable nor refutable in S.

Discussion. Theorem 15, together with the fact that there exists
an R.I. pair of r.e. sets, provides yet another way of proving that
any consistent axiomatizable Rosser system for sets (such as Peano
Arithmetic) must be incomplete (because in a Rosser system for sets,
every pair of r.e. sets is strongly separable. Hence some R.I. pair of
r.e. sets is strongly separable). However, this proof, like the proof
of Theorem 7, is non-constructive since the proof of Theorem 15
doesn't provide any way of finding a number outside the sets A' and
B'. A constructive version of Theorem 15 (Kleene's Symmetric Form
of Godel's Theorem) will be given in Chapter 5. Indeed, many of
the results of this chapter have "effective" analogues, but we cannot
state these before turning to the subject of indexing, which we will
do in the next chapter.

Exercise 8—Incompleteness and Undecidability. Another ap-
proach to incompleteness is via undecidability and axiomatizability.
Using the facts that the set 5 of Godel numbers of sentences is
recursive2 and that for any system <S, the set P is recursive iff P n S
is recursive, fill in the following steps of the proof that if S is axiom-
atizable but undecidable, then S must be incomplete.

1. Suppose that <5 is axiomatizable. Then the sets PftS and Rr\S
are both r.e.

2. Suppose S is also complete. Show that the complement of Pr\S
is R U S. Show that P n 5" is, therefore, recursive and, hence,
P must be recursive.

3. Show that it, therefore, follows that if S is axiomatizable but
undecidable, then S must be incomplete.

Exercise 9—Church's Theorem. For any system S and any sen-
tence X, by S + {X}, we mean the system whose axioms are those of
S together with X. By a well known result known as the deduction

2Exercise 7, Ch. 4, G.I.T.
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theorem, a formula Y is provable in 5 + { X } iff the formula X D Y
is provable in S.

Now let SQ be the system whose only axioms are those of first-
order logic with identity and function symbols (the arithmetic sig-
nificance of the function symbols plays no role). One form of the
result known as Church's Theorem (also anticipated in Godel, 1931,
Proposition IX and Proposition X) is that So is undecidable (there is
no decision procedure for first-order logic with identify and function
symbols). Using the deduction theorem, this follows from the exis-
tence of a finitely axiomatizable but undecidable system (e.g. (Q))
by the following argument (whose steps are to be filled in by the
reader).

1. Let X be the conjunction of the closures of the nine non-logical
axioms of (Q). Then the provable formulas of (Q) are the prov-
able formulas of SQ + {X}.

2. Then by the deduction theorem, a formula Y is provable in (Q)
iff X D Y is provable in SQ.

3. For any number y, the Godel number of X D Ey is a recursive
function of y—call this function <j)(y).

4. Let PQ be the set of Godel numbers of the provable formulas
of So, and let P be the set of Godel numbers of the provable
formulas of (Q). Show then that P = <j>~l(P0).

5. Show, therefore, that if SQ were decidable, (Q) would be decid-
able.

Note. Church's theorem is known in the stronger form that pure
first-order logic (i.e., first-order logic without identity or function
symbols—just predicate symbols) is undecidable. Indeed, pure first-
order logic with only one binary predicate symbol is undecidable—for
a neat proof, cf. Boolos and Jeffrey, Chapter 22.



Chapter III

Indexing

For the remaining chapters, we will need two basic theorems in recur-
sive function theory—the enumeration theorem of Kleene and Post
and the iteration theorem of Kleene.

/. The Enumeration Theorem

§1. Indexing. We wish to arrange all r.e. sets in an infinite
sequence WQ^I, . . . ,wn, . . . (allowing repetitions) in such a way that
the relation x S uy is r.e.

We shall take the system (Q) as our basic formalism for recursive
function theory. W'e know that (Q) is axiomatizable and that the
representable sets of (Q) are precisely the r.e. sets. We define wt- as
the set of all numbers n such that Ei[n] is provable in (Q). Equiv-
alently, a;,- is the set of all n such that r(z,n) € P, where r(i,n) is
the Godel number of Ei[n] and P is the set of Godel numbers of the
provable formulas of (Q). Since r(x,y) is a recursive function and
P is an r.e. set, then the relation r(x,y) e P is r.e., and this is the
relation y £ u>x. Also, every r.e. set A is represented in (<Q) by some
formula Ei(vi)\ hence A — Wj. Thus every r.e. set appears in our
enumeration.

We call i an index of an r.e. set A if A = a;;. We let U(x,y) be
the relation x 6 uy, and we see that this relation is r.e.

Indexing of r.e. Relations. For each n > 2, we also wish to ar-
range all r.e. relations of degree n an in infinite sequence

48
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in such a manner that the relation Ry(%i, . . . ,xn) is an r.e. relation
among $1, . . . , xn and y. To this end, it will be convenient to use the
indexing of r.e. sets that we already have and to use the recursive
pairing function J(x,y) and its associated functions Jn(xi,. . . ,xn)
(cf. §4, Chapter 1).

We simply define Rf(xi, . . . , xn) iff Jn(xi,. . . , xn) 6 w,-. Since cjj
is r.e. and Jn(xi, . . . ,xn) is a recursive function, then the relation
Rf is r.e. (Proposition 2, Chapter 1). Also, given any r.e. rela-
tion R(XI, . . . , xn\ the set A of all numbers Jn(x\, . . . , xn) such that
R(XI, . . . , xn) is r.e. (by (d) of Proposition 2, Chapter 1), and A = u>i
for some i. Therefore

and so R — R™. Thus, every r.e. relation has an index. Finally, since
the relation x 6 uy is r.e. and Jn(xi, • • • ,#n) is a recursive function,
the relation Jn(x\,... ,xn) G uiy, as a relation among xi,...,xn and
y, is an r.e. relation, and this is the relation R™(XI, ... ,xn).

Remark. An alternative scheme for indexing r.e. relations of degree
> 2 and one that does not use the functions JH(XI, ... ,xn) is this:
For each n > 2, we use the function rn(x, yi,..., yn) of §6 of Chap-
ter 1 (rn(x,yi,. ..,yn) is the Godel number of Ex[yi,.. . , y n ] ) - We
define Rf as the set of all n-tuples (xi,..., xn) such that

However, the scheme we have chosen has the technically handy prop-
erty that for each n > 2,

We have now proved:

Theorem 1 — The Enumeration Theorem. For each n > 1,
there exists an enumeration RQ, E", . . . , R™, . . . of all r.e. relations
of degree n such that the set of all (n + l)-tuples (#1, . . . xn, y), for
which Ry(x\, . . . , Xn) holds, is an r.e. relation.

For each n > 1, we let U H + I ( X I , . . . , xn, y) be the relation
R ™ ( X I , . . . ,xn). These relations are sometimes referred to as the
universal relations (U2(x,y) is the universal relation for r.e. sets,
U3(xi,xz, y) is the universal relation for r.e. relations of degree 2,
and so forth). No ambiguity will result if we write R{(XI, . . . ,#„)
for R?(x-L,...,xn) and U(xl, . . . ,xn,y) for Un(xi,...,xn,y), since
the number of arguments makes the superscript clear. Also "w,-" is
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synonymous with "J?J".

Exercise 1.

1. Given a collection C of sets of natural numbers, a binary relation
R(x,y) on the natural numbers is said to enumerate C if:

a. For every set A in C there is a number n such that for all
x, x £ A <->• R(x,n);

b. For each n, {x : R(x,n)} is a member of C.

By the enumeration theorem, there is an r.e. relation U(x,y)
that enumerates all r.e. sets. Show that there is no arithmetic
relation A(x,y) that enumerates all arithmetic sets.

2. Let (7 be the set of all numbers x such that x 6 ux. [This set C
will play a key role in the next chapter.] The set C is obviously
r.e. Is it recursive?

3. Let C be a collection of sets and relations of natural numbers
such that for any relation jR(a;,y), if R e C, then so is

Prove that the following two conditions are logically incompat-
ible:

a. There is a relation R(x,y) in C that enumerates all the sets
inC;

b. the complement of every set in C is again in C.

4. Show that the answers to 1 and 2 both follow from 3.

Exercise 2. Is it possible to enumerate all recursive functions of
one argument in a sequence /o(a;),/i(x),..., fn(%),... in such a way
that the function fx(y) (as a function of the two variables x and ?/)
is a recursive function?

Exercise 3. Show that there is a recursive function 4>(x} with the
following two properties:

1. For any number i, 0(i) is the Godel number of a formula that
represents w,- in (Q);

2. For every i, <f>(i) > i.

Exercise 4. Show that every r.e. set has infinitely many indices.
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//. The Iteration Theorem

§2. The Iteration Theorem. A second basic tool of recur-
sive function theory is the iteration theorem (sometimes called the
5™ theorem) due to Kleene (also discovered independently by Mar-
tin Davis). To fully appreciate the power and significance of this
theorem, the reader should first try the following exercises.

Exercise 5. We know that for any two r.e. sets w,- and Wj, their
union Wj U ujj is r.e. Is there a recursive function 4>(x,y) such that
for any numbers i and j,

[The question can be paraphrased: Given two r.e. sets (in the sense
that we are given indices for them) can we effectively find an index
of their union?]

Exercise 6. Show that there is a recursive function <f>(x) such that
for any numbers i,x and y

[This can be paraphrased: Given an index of an r.e. relation of two
arguments, we can "find" an index of its inverse.]

Exercise 7. Show that for any recursive function f ( x ) there is a
recursive function t(x) such that for every number i,

The reader who has solved the above problems will have found
himself repeatedly going back to the formal system (Q). The iter-
ation theorem (Theorem 2 below) frees us from this once and for
all.

Theorem 2 — Part 1. For any r.e. relation R(x,y), there is a re-
cursive function <f>(y) such that for all numbers i and x,

Proof. Suppose R(x,y) is r.e. Then it is represented in (Q) by some
formula F(VI,V%). For any number n, let ,F[7;i,n] be the formula
Vv2[v2 = n D F(vi,v2y\ and let <f»(n) be its Godel number. The
function <j> is easily seen to be recursive. For any number i, the
formula F[VI,I] represents x : R(x,i) and so its Godel number <f>(i)
is an index of this set. Thus x € ^u) <-* R(x,i).
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Theorem 2 — Part 2. For any positive integers m and n, and any
r.e. relation R(XI, . . . ,xm,yi,. . . ,yn), there is a recursive function
<t>(yii • • • ,2/n) such that for all numbers x\, . . . ,xm and ii, . . . ,in:

Proof. This can be obtained from Part I and Proposition 10 of Chap-
ter 1 as follows: By Proposition 10, Chapter 1, there is an r.e. relation
M(x,y) such that for all numbers x\,...,xm and y\,... ,yn,

(1) R(xi,...,xm,yi,...,yn) <->• M(Jm(xi,... ,xm), Jn(yi, • • • ,yn)).

Then by Part 1 applied to M(x,y), there is a recursive function
t ( y ) such that for all x and j/, x £ ^t(y) *~* M(x,y}. Therefore, for
all x-i,..., xm and j / T , . . . , yn we have:

(2) Jm(zi , . . . ,a?m) € wtj(yi }

Hence

And so we take 4>(y^. .. ,yn = tJ(yi, ...,yn).

Remark. If we had taken the alternative indexing scheme men-
tioned in §1 (the one that doesn't employ a pairing function), then
we would have proved Part 2 by taking a formula

that represents

in (Q) and by taking <f>(yi,. . . ,yn) to be the Godel number of

Informally, the iteration theorem says that given an r.e. relation
R ( X I , . . . ,xm,yi,.. . ,yn), if we plug in numbers ii,...,in for the
variables y\, . . . , yn, we can find an index of the relation

as a recursive function of ij, — , in.

Applications of the Iteration Theorem. Using the iteration the-
orem, let us now solve the last three exercises.
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For Exercise 5, let R(a;,y\,y-i) be the r.e. relation:

Then by the iteration theorem, there is a recursive function ^(2/1,^2)
such that for all numbers 11,^2?x:

Therefore o%-lii2) = u^ Uu;;2.
For Exercise 6, let R(XI, #2, y) be the r.e. relation Ry(x^, x\). [This

relation is explicitly definable from the relation U3(xi,X2,y). Hence
it is r.e.]. Then by the iteration theorem, there is a recursive function
<f>(y) such that for all x\,xi and i,

For Exercise 7, given a recursive function /(*), let R(x,y) be the
r.e. relation f ( x ) 6 uy. Then by the iteration theorem, there is a
recursive function <j>(y) such that for all x and i,

Hence, u;0(i) = f~l(ui).
Other applications of the iteration theorem are given in some of

the exercises that follow.

Exercise 8. 1. Prove that there is a recursive function (f>(y) such
that for all i and x, x € ̂ m <-+ Ri(x,x).

2. Prove that there is a recursive function 4>(y) such that for all i
and x, x 6 u^,-) <->• 3yR{(x,y).

3. Prove that there is a recursive function ^(2/1,3/2) such that for
any recursive functions /(&) and g(x) and any numbers i and
j, if i is an index of the relation f ( x ) — y and j is an index of
the relation (7(3:) = y, then ^(i,j) is an index of the relation
/OK*)) = »•

4. For any two sets A and J?, their cross-product Ax B is denned
to be the set of all numbers J(x,y) such that a; € A and y € -0.

Prove that there is a recursive function <f>( 2/1,2/2) such that for all
numbers ix and i2, ^(,-1|t-2) = w^ X w,-2.

Exercise 9. Show that for any positive ra and n and any r.e. rela-
tion R(XI, ..., xm,yi, . . . ,?/„) there is a recursive function
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such that for all numbers i\ , . . . , im and y\ , . . . , yn :

Exercise 10. A denumerable sequence Ai,A-2,. . . , Am, . . . consist-
ing of all r.e. sets is called an r.e. indexing if the relation x G Ay

is r.e. It is called a maximal indexing if for every r.e. indexing
BI,SZ, • • • , Bn, . . ., there is a recursive function <f>(x) such that for
all i, A0(t-) = Bi. [Informally, this says that given any U-index of an
r.e. set, we can effectively find an A-index of that set.]

By the enumeration theorem, the sequence wi, wj, . . . ,wn, . . . is an
r.e. indexing. Using the iteration theorem, show that it is maximal.
[Incidentally, it is known that not every r.e. indexing is maximal.]

Exercise 11 — The Uniform Iteration Theorem. Show that for
any positive m and n, there is a recursive function <j>(y, yi, . .. ,yn)
such that for all numbers i,ii, . . . ,in, and xi,... ,xm,

[This can be derived as a corollary of the iteration theorem together
with the enumeration theorem.]

Exercise 12. For any number n (by {n}, we mean the set whose
only member is n), show that there is a recursive function (f>(x) such
that for any number n, u>^n) = {n}.

More generally, show that for any recursive function /(#), there
is a recursive function </>(a;) such that for any n, u^n)

Exercise 13. Prove that there is a recursive function ^(2/1,3/2) such
that for any numbers i and j, ̂ (ij) = w,- U {j}.

Exercise 14. Prove that for any r.e. set A, there is a recursive func-
tion <f)(x) such that for any number i in A, w^(j) is the set of all
natural numbers, and for any i outside A, ^Mi) is the empty set.

Exercise 15. Prove that for any r.e. set A and any r.e. relation
R(x,y), there is a recursive function <j>(y} such that for all i :

1. i € A => W0(j) = x : R(x,i).
2. i £ A =>• w<£(;) = 0- [0 is the empty set.]

Exercise 16. By definition, a set A is r.e. iff it is the existential
quantification of a So-relation R(x,y). Show that given any i, we
can effectively find a number j such that Rj(x,y) is a So-relation
whose existential quantification is w,-. More precisely, prove that
there is a recursive function </>(y) such that for every number i, R^if.

 = { f(n)}.
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is S0 and u^-x: 3yR<f,(i)(x,y).

Master Functions. We shall call a function F(y, z) a master func-
tion if it is recursive and if for every r.e. relation M(x,y, z), there is
a recursive function t(y) such that for all numbers y and z,

The following theorem will prove quite useful in later chapters.

Theorem 2.1. There exists a master function F(y,z}.

Proof. The set of all triples (x,y,z) such that Ry(x,z) is an r.e.
relation and, hence, by the iteration theorem, there is a recursive
function F(y,z) such that for all x,y and z,

We show that F is a master function. Let M(x,y,z) be an r.e.
relation. Take the set of all triples (y, x, z) such that M(x, y, z)—this
set is an r.e. relation. By the iteration theorem, there is a recursive
function t(y) such that for all x,y and z,

In (1) we replace y by i(y), and we have

By (1)' and (2), it follows that x G ̂ F(t(yYz) *~* M(x,y,z), and so
wF(t(y),z) = x:M(x,y,z).

More generally, let us call a function F(y,zi,...,Zn) a master
function if it is recursive, and if for any r.e. relation M(x,y,zi,... ,zn),
there is a recursive function t(y) such that for all y,zi,.,.,zn:

If, in the proof of Theorem 2.1, we replace "z" by "^ l5...,2n"
everywhere, we will have a proof of:

Theorem 2.2. For eacA positive n, there exists a master function
F(x,y, Zi, . . . , zn} of n + 2 arguments.

Exercise 18. Suppose F(y,zi,... ,zn) is a master function. Prove
that for every r.e. relation M(x , y\ , . . . , yk , z\ , . . . , zn ) , there is recur-
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sive function t(y\ , . . . , y^ ) such that for all y\ , . . . , yk and z\ , . . . , zn :

Exercise 19. Prove the more general fact that if F(y,z\, . . . ,zn)
is a master function, then for any positive integers k and r and
any r.e. relation M(XI, . . . ,xr, y\, . . . , yk,z\, . . . , zn), there is a re-
cursive function t(yi,...,yk) such that for all x-i, . . . ,xr,yi, . . . ,yk
and zi,...,zn,

III. Effective Separation

The results that follow will have many applications.

§3. Uniform Separation. The next theorem is a "uniform"
version of Theorem 10, Chapter 0.

Theorem 3. There is an r.e. relation B(x,y,z) (which we read
"x 6 Uy before x 6 uz ") such that for all numbers i and j,

1. x : B(x,i,j) is disjoint from x : B(x,j,i),
2. LOi — u>j C x : B(x,i,j) and u>j — u>i C x : B(x,j,i).
3. Ifu?i and MJ are disjoint, then u>i = x : B(x,i,j) and

LOJ = x : B(x,j:i).

Proof. Since the relation x € wy is r.e., then there is a recursive
relation (in fact a So-relation) P(x,y,z) such that for all x and y,
x € uy <-» 3zP(x,y,z). [We read P(x,y,z) as "2 puts x in uy"".
Then x € u>y iff some z puts x in u>y.] We now define B(x,y.,z) as

[We can informally read B(x, y, z} as "some number puts x in uy and
no number less than or equal to it puts x in wz" — or, more briefly,
"a; € Wy before a; € wz".] Since P(x,y,z) is recursive, P(x,y,z) and
~ P(x,y,z) are both r.e. Hence .8(2;, j/, 2) is easily seen to be r.e.
The verifications of (1), (2) and (3) are obvious.

Exercise 20. For each n > 2, let BH(XI, . . . ,xn,y,z~) be the r.e. re-
lation 5 (</(a:i, . . . ,£„) ,?/ , 2^). [We read it: "(21, ... ,£«) G -R^ before
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(xi, . . . ,»„)€ -R".] Show that

1. For each i and j, the relations

Effective Separation. From Theorem 3 and the iteration theorem,
we have:

Theorem 4. There is a recursive function o~(x,y) such that for all
i and j,

1. c*V(i,j) andUp^jfi are disjoint supersets ofoji — ujj and u>j — U{,
respectively.

2. Ifd>i and u>j are disjoint, then oji — w<r(«,j) and u>j — uj^^^.

Proof. We take an r.e. relation B(x,y,z) satisfying Theorem 3. By
the iteration theorem, there is a recursive function cr(j/i,j/2) such
that for all i and j, w<r(t,j) = x '• ^(x,i,j). The result then follows
by Theorem 3.

We take the function a(x,y) constructed above as fixed through-
out this volume.

Exercise 21. Show that for each n > 1 and every i and j,

l- R*(i,j) is disJ°int from Rl(jiY9 T)n nn (~ j)n '2. R{ - R. C Ra(iJ),
3. If 5f and R^ are disjoint, then R* = R"(itjy

(as relations among x\,...,xn) are disjoint,
2. Rf-R1} C\Xl...xn :£„(>!,...,zn,i,j),
3. If Rf and R1} are disjoint, then
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Generative Sets and Creative Systems

We now have the background to study the beautiful subject of cre-
ative and productive sets inaugurated by Emil Post [1944]. This
plays a key role in the metamathematical study of incompleteness
and undecidability.

§1. Productive and Creative Sets. To say that a set A is
not r.e. is equivalent to saying that for any r.e. subset u;; of A, there is
a number in A not in u>,-. A is called productive if there is a recursive
function 4>(x}—called a productive function for A—such that for any
number i, if w, C A, then <f>(i) 6 A — a;,-. [Informally, this means that
it is not only true that no r.e. subset of A is A, but given any such
r.e. subset, we can effectively find a number which is in A but not in
the subset.] A set A is called creative (after Post) if it is r.e., and its
complement is productive. Let us note that a productive function
for the complement of a set A is a recursive function 0(x) such that
for any number i such that a;,- is disjoint from A, the number <j>(i)
lies outside both Wj and A.

A system <S is called productive if the set P of Godel numbers of
the provable formulas of «S is a productive set; S is called creative if
the set P is creative. As we will see, the complete theory A/" is not
only not axiomatizable but is productive, and the system P.A. is not
only undecidable but creative.

Post's Sets C and K. A simple example of a creative set is Post's
set C—the set of all numbers x such that x € ux. Thus for any
number i, i 6 C <-*• i € a;,-. If a;,- is disjoint from (7, then i is
outside both uji and C and, therefore, the identity function I(x) is a
productive function for C. Therefore, C is productive, and since C

58
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is obviously r.e., C is creative.
A less immediate example of a creative set is the set K of all num-

bers J(x,y) such that y € ux. [J is the recursive pairing function.]
This set K was also introduced by Post (1943) and is called the com-
plete set. The proof that K is creative is less immediate than the
proof for C (it involves use of the iteration theorem, as we will see).

Complete Productivity and Creativity. It is also correct to say
that a set A is not r.e. iff for every r.e. set w,-> whether a subset of
A or not, there is a number j such that j 6 A <-> j ^ w,. By a
completely productive function for A, we mean a recursive function
<j>(x) such that for every number i, <j)(i} 6 A <-> <j>(i) £ w;. A set
A is called completely productive if there is a completely productive
function for A. If A is r.e. and A is completely productive, then A is
called completely creative, and any completely productive function
for A is called a completely creative function for A (provided A is
r.e.).

The set C of all a; such that x 6 ux is obviously not only creative
but completely creative since the identity function is clearly a com-
pletely creative function for C. Therefore, a completely creative set
exists. Post apparently did not capitalize on the fact that the set
C is not only creative, but completely creative; we hazard a guess
that if he had, many results in recursive function theory would have
come to light sooner.

Any completely productive function for A is obviously also a pro-
ductive function for A. By a famous result of John Myhill (which
we will study in Chapter 10), if there exists a productive function
for A, then there exists a completely productive function for A and,
hence, any productive set is completely productive.

Generative Sets. A set whose complement is productive is some-
times called co-productive. Sets whose complements are completely
productive are of sufficient importance to warrant giving them a
name; we shall call such sets generative sets. (This terminology fol-
lows Smullyan [1963].) And by a generative function for A, we mean
a completely productive function for A. Thus, a generative func-
tion for A is a recursive function (f>(x) such that for any number i,
<j>(i) € A *-* <£(i) € w,-.

Generative sets will be the main object of study in this chapter.
We call a system S generative if the set P is generative, and we call
S completely creative if <S is generative and axiomatizable—i.e., if P
is completely creative.
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§2. Many-One Reducibility; Universal Sets. By a
(many-one) reduction of a set A to a set B, we mean a recursive func-
tion f(x) such that A = f~l(B} (i.e., for all x, x £ A <-> f ( x ) G B).
A set A is said to be (many-one) reducible to B if there is a reduction
of A to B. A function is also said to reduce A to B if it is a reduction
of A to B. A set a is called universal (sometimes many-one com-
plete) if every r.e. set is reducible to a. [Throughout this chapter we
use the term reducible to mean many-one reducible. There are also
other important types of reducibility that occur in recursive function
theory.]

Exercise 1. Show that Post's set K is universal.

Proposition 1. If A is reducible to B and A is generative, then B
is generative.

It will be useful to state and prove Proposition 1 in a more specific
form. For any r.e. relation R(x,y\ let us call a function t(y) an
iterative function for R(x,y) if t(y) is recursive and if for all i,

[The existence of such a function t(y) is guaranteed by the iteration
theorem.] So we will more specifically prove:

Proposition 1*. If f ( x ) reduces A to B and 4>(x) is a generative
function for A and t(y) is an iteration function for the relation
f ( x ) £ (jjy, then the function f<f>t(x) is a generative function for
B.

Proof. Assume hypothesis. Then for any numbers i and cc,

Hence for any number i:

f<j>t(i] & B «-*• (f>t(i) 6 A (since / reduces A to B),
<-> 4>t(i} € i^iii) (since <f> is generative for A),
<-» f(j)t(i) € uji (since t is iterative for the relation

Exercise 2. Show that if A is reducible to B and A is productive,
then B is productive.

Theorem 1. Every universal set is generative.
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Proof. Suppose a is universal. Post's set C is generative and r.e. Since
C is r.e., it is reducible to a (because a is universal). Therefore, a
is generative by Proposition 1.

Corollary. Post's complete set K is generative.

Proof. By Exercise 1, the set K is universal. [The solution to Exer-
cise 1 is that for any number t, the function J(i,x) (as a function of
x) is a reduction of Ui to K .] Therefore, K is generative by Theo-
rem 1.

Remark. The above proof that K is generative appeals to a previ-
ously constructed r.e. generative set — viz. the set C. Another proof
will be given shortly.

Exercise 2. Suppose that f ( x ) is a reduction of Post's creative set
C to a and that t(y) is an iterative function for the relation

Show that ft(x) is a generative function for a.

Uniform Universality. For any recursive function f(x,y) and any
set A, we will say that A is uniformly universal under f(x,y) if for
every number i, the function f(i,x) (as a function of x) is a reduction
of Mi to A (which means that for all i and x we have the equivalence
x € u>i <-»• f(i,x) £ A). We will call A uniformly universal if it is
universal under some recursive function f(x,y).

Every uniformly universal set is obviously universal (and we will
soon see that the converse also holds). The complete set K of Post is
not only universal but uniformly universal under the function J(a;, y).
Taking advantage of the fact that K is uniformly universal, we can
prove that K is generative without appeal to the existence of a com-
pletely creative set—the argument is a special case of the following
proposition.

Proposition 2. If A is uniformly universal under f(x,y) andt(y) is
an iterative function for the relation f(x,x) 6 uy, then f ( t ( x ) , t ( x ) )
is a generative function for A.

Proof. Assume hypothesis. Then for any numbers i and x,

1. f(t(i),x) G A -M. x G ut(t) <-»• f(x,x) 6 Ui.
Taking t(i) for x we have

2. /(<(»),*(»'))€ A^/(<(i) ,*(i))€w,-.
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Remark. The above proposition shows that if t(y) is any iterative
function for the relation J(x,x) G a;,,, then J ( t ( x } , t ( x ) } is a genera-
tive function for the set K. On the other hand, using our first proof
of the generativity of K, we see that if c is any index of the set C
and if t(y] is an iterative function for the relation J(c,x) 6 uy, then
<7(c,i(x)) is a generative function for K. Thus the two proofs yield
different generative functions for K.

Proposition 3. Every universal set is uniformly universal.

Proof. The set K is uniformly universal under J(x, y}. Now, suppose
A is universal. Since K is r.e., K is reducible to A under some
recursive function f ( x ) . Then A must be uniformly universal under
the function f j ( x , y ) because for all i and x,

§3. Representability and Uniform Representability.
We let «S be a system and P the set of Godel numbers of its provable
formulas. We continue to use the recursive function where we recall
that r(x,y) ( r ( x , y ) = Godel number of Ex[y]).

Proposition 4. If A is representable in S, then A is reducible to P.

Proof. If h is the Godel number of a formula that represents A in
«S, then the function r(/i,x) (as a function of x) is a reduction of
A to P because for any number n, n € A <-» Eh.[n] is provable in
S ^ r(h,n) e P.

Corollary 1. If some generative set is representable in S, then S is
generative (i.e., P is a generative set).

Proof. By Proposition 4 and Proposition 1.

Corollary 2. If all r.e. sets are representable in S, then S is gen-
erative.

Proof. By Corollary 2 and the fact that there is the r.e. generative
set C.

We know that all r.e. sets are representable in the systems (J?), (Q)
and P.A. (if P.A. is consistent) and that these three systems are
axiomatizable. Therefore, by Corollary 2, we have:
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Theorem 2. The systems (R),(Q), and P. A. (if consistent) are all
completely creative. In fact, every consistent axiomatizable extension
of (R) is completely creative.

Remark. The above proof of Theorem 2 makes appeal to the exis-
tence of a completely creative set. As pointed out by Bernays [1957]
in his review of Myhill [1955], a more direct proof is possible and,
in fact, yields an alternative proof of the existence of a completely
creative set. We shall now turn to this.

Uniform Representability. We shall say that all r.e. sets are uni-
formly representable in S if there is a recursive function g(x~) such
that for every number i, g(i) is the Godel number of a formula that
represents w,- in S. [Informally, this means that "given" any r.e. set,
we can "find" a formula that represents it.]

Proposition 5. // the relation x G uy is representable in S, then
all r.e. sets are uniformly representable in S.

Proof. Let if)(vi,v2) be a formula that represents the relation x G uy

in S. For any n, we let ^[v\, n] be the formula

and we let g(n) be its Godel number. The function g(x) is recursive.
For any number n, Egin) is the formula

Hence for any number m,Eg(n)(fh) is the sentence

and this sentence is provably equivalent to the sentence ^(m, n).
Therefore, for any numbers n and m, Egin^(m) is provable in S
if, and only if, tl>(m,n) is provable in S if, and only if, m 6 wn.
Therefore, Eg^(vi) represents the set u>n in S.

Corollary. If S is any consistent axiomatizable extension of (R),
then all r.e. sets are uniformly representable in S. In particular, all
r.e. sets are uniformly representable in (J?),(Q) and in P.A. (assum-
ing P.A. is consistent).

Systems in which all r.e. sets are uniformly representable enjoy
the following property.

Theorem 3. If all r.e. sets are uniformly representable in S, then
there is a recursive function <r(x) with the following two properties:
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(1) o~(x) is a generative function for P.
(2) For every number i, a(i) is the Godel number of a sentence.

Proof. Suppose g ( x ) is a recursive function such that for any num-
ber i, Eg(i)(v\) represents w,- in S. Then for all numbers i and y,
r(g(z),j/) € P <->• y €. cu,-. Therefore, P is uniformly universal under
the function r(g(x),y). Now let t(y) be an iterative function for the
relation r(g(x\x} € uy (thus ut^ = x : r(g(x),x) e u>i). Then
by Proposition 2, the function r(gt(x),t(x)) is a generative function
for P. Also, for any number z, g(z) is the Godel number of a for-
mula in which v\ is the only free variable. Hence, for any number a;,
gt(x) is the Godel number of a formula in the free variable uj, and
r(gt(x),t(x)) is the Godel number of a sentence, so we take o~(x) to
be r(gt(x),t(x)).

We might call a system S sententially generative if there is a re-
cursive function o~(x) satisfying the conclusion of the above theorem.
This means that there is a recursive function v(x) such that for every
number i, Ea^ is a sentence and Ea(^ is provable in S <-»• <r(z) 6 w,-—
in other words, -E^j) is a Godel sentence for a;,- with respect to the
system <S. [Informally, this means that for any r.e. set, not only is
there a Godel sentence for the set (with respect to 5), but "given"
any r.e. set, we can "find" such a Godel sentence.] Another method
of proving Theorem 3 (closer to the method we used in earlier chap-
ters to construct Godel sentences) is provided in Exercise 3 below.
A stronger result will be proved in Chapter 12.

From Theorem 3 and the corollary to Theorem 2 we have:

Theorem 4. If S is any consistent axiomatizable extension o f ( K ) ,
then S is sententially generative. In particular, the systems (R), (Q)
and P.A. (if consistent) are sententially generative.

We remark that neither the proof of Theorem 3 nor the proof of
Theorem 4 depended on a previously constructed generative r.e. set.

Exercise 3. By the iteration theorem, there is a recursive function
&(?/) such that for all i, u;^,-) = u>i* (w,-* = c?~1(aJ2-), where d(x) is
the diagonal function). Now suppose g ( x ) is a recursive function
such that for all i, Eg^\(v\) represents a;,- in S. Show that if we take
r(gkx,gkx) for cr(;c), the conclusion of Theorem 3 holds.

Exercise 4. a. Show that for any system S, if the set P* is gen-
erative, then the set P is generative.
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b. Show that if all r.e. sets are uniformly representable in S, then
the set P* is generative. [This with (a) yields yet another
proof that the systems (R), (Q) and P.A. (if consistent) are
generative, but it does not show that they are sententially
generative].

Exercise 5. Show that the set T of Godel numbers of the true arith-
metic sentences and its complement T are both generative sets.

§4. Generativity and Incompleteness. We now turn to
some "effective" analogues of Theorems 7 and 8 of Chapter 2. The
three theorems that follow are essentially Kleene's generalized forms
of Godel's theorem (1943), though our terminology and presentation
are somewhat different.

We let C be Post's r.e. generative set. We recall that the identity
function is a generative function for C.

Theorem K\. For any consistent axiomatizable system S, if H(v\)
is a formula that represents C in S and u>a is the set represented by
~ H(VI), then H(a) is undecidable in S. [Alternatively, and this is
closer to Kleene's formulation, if the negation of H(v\) represents
C and o>6 is the set represented by H(v\), then H(b) is undecidable
in S.]

Theorem K-Z. For any arithmetically correct axiomatizable system
S, if H(VI) expresses the set C and H(v{) represents uia in S, then
H(a) is a true sentence not provable in S.

Theorem K^. Suppose that S is an axiomatizable system and that
F(V\,VI) is a formula that enumerates the set C in S. Let ua be the
set represented in S by the formula Vt>2 ~ F(v\,v?). Then:

1. If S is simply consistent, then the sentence Vt?2 ~ F(a, v^) is
not provable in S.

2. // S is u-consistent, then the sentence V«2 ~ F(a, v^) is not
refutable in S.

Proofs. (Ki) Assume hypothesis. By the assumption of consistency,
uja is disjoint from C. Therefore, a £ u}a and a ^ C. Hence .ff(a)
is neither refutable nor provable in S. [Alternatively, if ~ H(v\)
represents C and H(VI) represents W&, then ui^ is disjoint from C.
Hence b is outside both ut, and C, and H(b) is neither provable nor
refutable in <5.]
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(Kz) Assume hypothesis. Since S is correct, the set represented
by H(v\) is a subset of the set expressed by H(VI); hence uia C C.
Thus u>a is disjoint from C, so a is outside both ua and C. Since
a 6 C, H(a) is true, and since a ^ wa, -ff(a) is not provable in S
(because H(VI) represents o;a). So, H(a) is true but not provable in
S.

(Ji'a) Assume hypothesis.

1. Suppose V^2 ~ F(a, v2) is provable in S. Then a € wa (because
Vu2 ~ ^(^1,^2) represents w0), and a € C. Hence for some n,
F(a,n) is provable (because -F(^i,U2) enumerates C). Hence
3^2^(0, ^2) is provable—i.e., ~ Vu2 ~ ^(0,^2) is provable, and
«S is inconsistent. So if S is consistent, V^a ~ F(a,v%) is not
provable.

2. Suppose <S is ^-consistent. Then S is simply consistent; hence
Vt?2 ~ F(a, ^2) is not provable (by (1)). Therefore a ^ a>a and
a £ C and, therefore, for all n, F(a,n) is refutable (because
•^(^15^2) enumerates C). Then by ^-consistency, the sentence
~ V^2 ~ F(a, v%) is not provable. [Alternatively, since F(VI, v-^)
enumerates C, then by the w-consistency lemma of §2, Ch. 0,
the formula ~ V«2 ~ F(v\,v-i) represents C, and so the sentence
V^2 ~ F(a, ^2) is undecidable by (K\)-}

Discussion. The theorems above provide perfectly good methods
of finding an undecidable sentence, say, of P.A. An interesting fact
about their proofs is that the diagonal function d(x) is nowhere em-
ployed! In fact, no diagonalization within the system (say P.A.) is
used; rather, the diagonalization (in a more general sense) occurs
outside the system in the key definition of the set C (we identified
the variables x and y in the relation x € c^, and this might be re-
garded as a "diagonalization" in a more abstract sense). The set C,
of course, plays the role in the above proofs that P* played in our
earlier incompleteness proofs.

Neither of the above theorems yields the incompleteness of P.A.
under the assumption of simple consistency. In the next chapter,
we will study Kleene's symmetric form of Godel's theorem; this, like
Rosser's argument, establishes the incompleteness of P.A. under the
assumption of simple consistency, but it does not use the diagonal
function d(x); the diagonalization again occurs outside the system.



Chapter V

Double Generativity and Complete Effective

Inseparability

/. Complete Effective Inseparability

§1. Complete Effective Inseparability. A disjoint pair
(AijA?) is by definition recursively inseparable if no recursive su-
perset of AI is disjoint from A%. This is equivalent to saying that
for any disjoint r.e. supersets a;,- and Wj of A\ and A2, the set Wj
is not the complement of uij—in other words, there is a number n
outside both Wj and Wj. The disjoint pair (Ai,A2) is called effec-
tively inseparable—abbreviated E.I.—if there is a recursive function
8(x, y)—called an E.I. function for (Ai, A2)—such that for any num-
bers i and j such that A\ C w,- and AI C Uj with a;,- being disjoint
from Wj, the number £(i,j) is outside both a;,- and Wj.

We shall call a disjoint pair (Ai, A2) completely E.I. if there is a
recursive function S(x, y)—which we call a complete E.I. function for
(Ai, A%)—such that for any numbers i and j, if AI C o>,- and AI C w^,
then 6(i,j) € u;,- <-* ^(i, j) 6 Wj (in other words, fl(i,j') is either inside
or outside both sets Wj and Wj.). [If w,- and Wj happen to be disjoint,
then, of course, f>(i,j) is outside both w,- and w^, so any complete E.I.
function for (Ai^Ay) is also an E.I. function for (Ai,^2).] In a later
chapter, we will prove the non-trivial fact that if (Ai, A2) is E.I. and
AI and A2 are both r.e., then (Ai,A2) is completely E.I. [The proof
of this uses the result known as the double recursion theorem, which
we will study in Chapter 9.]

Effective inseparability has been well studied in the literature.
Complete effective inseparability will play a more prominent role in
this volume—especially in the next few chapters.

67
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Proposition 1.

(1) If (AijAj) is completely E.I., then so is (A2,Ai)—in fact, if
S(x,y) is a complete E.I. function for (Ai,Az), then 8(y,x) is
a complete E.I. function for (A2, A\).

(2) If ( A I , A I ) is completely E.I. under 6 ( x , y ) and additionally
AI C AI, AI C A2 and A( are disjoint from A'2, then (A^, A2)
is completely E.I. under 6(x,y).

Proof. Obvious.

§2. Kleene's Construction. There are many ways to con-
struct a completely E.I. pair of r.e. sets and we shall look at several.
We first turn to Kleene's method.

We will call a recursive function g(x,y) a Kleene function for a
disjoint pair (Aj,^) if for all x and y

1- 9(%, y) £uy-u>x =>• g(x,y) 6 AI,
2. g ( x , y ) € ux - uy => g ( x , y ) 6 A2.

Proposition 2. If g(x,y) is a Kleene function for (AijAj), then
(A1?A2) is completely E.I. under g(x,y).

Proof. Suppose g ( x , y ) is a Kleene function for (Ai,A2). Now sup-
pose x and y are such that Aj C LJX and AI C uy. Then

but no number in uy —ux can be in LJX. Therefore, g(x, y) ^ uy — wx.
By a symmetric argument, g ( x , y ) ^ ux — uy. Therefore,

We shall call a disjoint pair (Ai,A2) a Kleene pair if it has a
Kleene function. By Proposition 2, every Kleene pair is completely
E.I.

Theorem 1. There exists a Kleene pair (K\,K-i) of r.e. sets.

Proof. We use the recursive pairing function </(#, y) and its inverse
functions K(x) and L ( x ) , and let HI be the set of all numbers J ( x , y )
such that J ( x , y ) 6 u>y. We also let 112 be the set of all numbers
J(x,y) such that J(x,y) € ux. [Equivalently, HI is the set of all a;
such that x 6 U>LX and 112 is the set of all x such that x 6 wkx.]
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Obviously

J(x,y) £ uy - ux <->• J(x,y) € HI - JI2

J(x,y) e ux - uy <-» J(a;,y) G II2 - HI

so J(a;, y) is a Kleene function for (III - Ha, 112 - HI). Since the sets
HI and 112 are both r.e., by the separation principle (Theorem 10,
Chapter 0), there are disjoint r.e. supersets K\ and KI of HI — Ib
and 112 — HI respectively. [For defmiteness, we can take K\ to be
the set of all x such that x € ULX before x £ U>KX and take KI to be
the set of all x such that x € U>KX before x 6 ^LX—i-e.

where B(x,y,z) is the r.e. relation of Theorem 3, Chapter 3.] Since
J(x, y) is a Kleene function for the smaller pair (Hi—112 and 1X2—HI),
then, of course, it is a Kleene function for the larger pair (K\,K-i).

From Theorem 1 and Proposition 2 we have:

Theorem 2. There is a completely E.I. pair (K\,K%) of r.e. sets.

§3. Kleene's Symmetric form of Godel's Theorem.
The following theorem is a "constructive" analogue of Theorem 15,
Chapter 2.

Theorem 3. (Kleene's Symmetric Form of Godel's Theorem) Sup-
pose S is a consistent axiomatizable system in which the pair (K\,Ki)
is strongly separable. Then for any formula H(v\) which strongly
separates KI from KI in S, if ua is the set represented in S by
H(VI), and MI, is the set represented in S by ~ H(VI), then H(c} is
an undecidable sentence of S, where c is the number J(a,b).

Proof. Assume hypothesis. Then KI C ua and KI C ub. Since S is
consistent, the sets u>0 and uty are disjoint. Therefore,

(because J(x,y) is a Kleene function for (Ki,K-i). Hence J(x,y)
is a complete E.I. function for (Ki^K^) and an E.I. function for
(Ki,Ki)). We let c = J(a,6). Since c £ w0, H(c) is not provable
in S and since c £ w&, H(c) is not refutable in S. Therefore H(c) is
undecidable in S.
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Remark. In the above proof, the pair (Ki,Ky) plays an analogous
role to the pair (R*,P*) of Rosser's proof. Of course, the sets KI
and K2 were defined quite independently of the system S, and the
diagonal function d(x} was not used.

§4. Reducibility and Semi-reducibility. We shall say that
an ordered pair (Ai,A2) is reducible to an ordered pair (Bi,B2) if
there is a recursive function f ( x ) which simultaneously reduces AI to
Bl and A2 to B2. This means that AI = f~l(Bi) and A2 = f~l(B2),
or equivalently that for every number x:

(1) x € AI => f ( x ) € #1,
(2) x e A2 => /(x) e #2,
(3) Z £ AI U A2 => /(JB) £ J9i U B2.

Such a function f ( x ) we call a reduction of (Ai, A2) to (5i
we also say that (vli,A2) is reducible to (Bi,Bi) under /(a;).

We call a recursive function f ( x ) a semi-reduction of (A
to (jBi, J32) if for all #, conditions (1) and (2) above hold (but not
necessarily (3)). This means that for all a; e AI, f ( x ) 6 BI and
for all x € A2 and f ( x ) € -B2 — in other words, A\ C /~1(JB1) and
A2 c r

1^).
The following two lemmas will have several applications.

Lemma Aj. If (Ai,A2) is a Kleene pair and if (Ai, A2) is semi-
reducible to (BiiBz), and BI and B2 are disjoint, then (Bi,B2) is
a Kleene pair. More specifically, if g(x,y) is a Kleene function for
(Ai,A2), and f ( x ) is a semi-reduction of(Ai,A2) to (Bi,B2), and
if BI and B2 are disjoint, then for any iterative function t(y) for the
relation f ( x ) 6 uy, the function f(g(tx, ty)) is a Kleene function for
(5i,52).

Proof. Assume hypothesis.

1. Suppose fg(tx,ty) 6 uy - ux. Then g(tx,ty) € f~l(uy - ux).
But f~l(uy - ux) = f~l(uy) - f~l(wx) = ut(y) ~ ut(x). So
g ( t ( x ) , t ( y ) } e ut(y) - ut(x)- Hence g(t(x),t(y)} 6 AI (since
g(x,y) is a Kleene function for (Ai,A2)). Therefore,

(because f ( x ) is a semi- reduction of (Ai, A2) to (Bi,B2)).

(B1,B2);

(A1,A2);
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2. By a similar argument, if fg(tx,ty) € ux — uy, then

and so fg(tx,ty) is a Kleene function for (Bi^B?).

Lemma A2. Let (A,B) be a disjoint pair of sets, and f ( x , y } and
g(x,y) be recursive functions such that for all i,j and x:

(1) x € Uj - Ui => f(g(i,j),x) € A,
(2) x e w,- - u;./ => f(g(ij),x) £ J3.

Lef A' = or : f(x,x) £ A, B' = x : f(x,x) £ B and t(y) be any
iterative function for the relation /(#, a;) G wy. Then:

(a) g(x,y) is a Kleene function for (A1, B'},
(b) f(g(tx,ty),g(tx,ty)) is a Kleene function for (A, B).

Proof. Assume hypothesis.

1. Substituting g(i,j) for x in (1) we get:

Similarly, from (2) we get:

and so g(x,y) is a Kleene function for (A', B'}.
2. This follows from (a) and Lemma AI, since f(x,x) is a semi-

reduction (in fact a reduction) of (A',B') to (A,B).

§5. Completely E.I. Systems. We continue to let P and R
be the set of Godel numbers of the provable and refutable formulas
of <5; we shall refer to P and R as the nuclei of S. S is called an
E.I. system if the pair (P, R) is E.I., and call S completely E.I. if the
pair (P, R) is completely E.I. We continue to use the representation
function r(x,y) (r(x,y) is the Godel number of Ex[y\).

Lemma. If (Ai,^) is strongly separable in S, then (A\,A-z) is
semi-reducible to (P,R).

Proof. Let h be the Godel number of a formula H(VI) which strongly
separates AI from A^ in <S. Then the recursive function r(h,x) (as
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a function of x) is a semi-reduction of (Ai,Ay) to (P,R).

Note. If H(v\) exactly separates A\ from AI in 5, then the function
r(h,x) is a reduction of (Ai,Az) to (P,R).

From the above lemma, Lemma AI and Proposition 2, we get:

Theorem 4. If some Kleene pair is strongly separable in S and S
is consistent, then its nuclei P and R are completely E.I.—in fact,
(P, R) is a Kleene pair.

Theorem 5. Every consistent Rosser system for sets is completely
E.I.

Proof. If S is a consistent Rosser system for sets, then the Kleene pair
( K i j K y ) of r.e. sets is strongly separable in <S; hence S is completely
E.I. by Theorem 4.

Corollary. Every consistent extension of (R) is completely E.I. In
particular, the systems (R),(Q), and P.A. (if consistent) are com-
pletely E.I.

Remark. The above proof of the corollary utilizes a Kleene pair of
r.e. sets previously constructed.

In the next section, we will obtain a strengthening of the above
corollary whose proof does not utilize a previously constructed Kleene
pair of r.e. sets and which provides another proof of the existence of
such a pair.

§6. Effective Rosser Systems. We shall say that S is ef-
fectively a Rosser system for sets if there is a recursive function
7r(a;,t/)—which we call a Rosser function for <5—such that for any
numbers i and _/, the number TT(Z, j) is the Godel number of a formula
H(VI) which strongly separates u>i~u>j from UJ-LJ, in S.

Theorem 6. Suppose S is a consistent effective Rosser system for
sets. Then

(a) The pair (P*,R*) is completely E.I.—in fact, it is a Kleene
pair.

(b) The pair (P, R) is also a Kleene paii—moreover, there is a
Kleene function S ( x , y ) for (P,R) such that for all numbers i
and j, the number 8(i,j) is the Godel number of a sentence.



I. Complete Effective Inseparability 73

Proof. Suppose S is consistent and that ir(x,y) is a Rosser function
for S. Let n'(x,y) = ir(y,x). Then for each i and j, n'(i,j) is the
Godel number of a formula that strongly separates Uj-u>i from w,—u?j
in 5. Hence for all i, j and x

1. x € u>j - w,- =*• r(7r'(i,j),z) € P,
2. a; <E w; - Wj =>• r(7r'(j, i),z) € #.

a. It then follows from (a) of Lemma AI (taking r for / and
TT' for </) that Tr'(x,y) is a Kleene function for (P*,JJ*)
(because P* = x : r(x,x) G P and 72* = a; : r-(a;,a;) G R,
since r(ar,a;) is the diagonal function d(x)).

b. We now take any iterative function t(y) for the relation
r(x, x) 6 wv. Then by using (b) of Lemma A2, we find that
r(ir'(tx,ty), x'(tx, ty)) is a Kleene function for (P, R). Thus
tZ(7r'(ia;,tj/)) is a Kleene function for (P,R). Since for any
numbers a and &, 7r'(a, 6) is the Godel number of a formula
with v\ as the only free variable and dir'(a, b) is the Godel
number of a sentence. Hence for all x and y,d7r'(tx,ty) is
a sentence-number (Godel number of a sentence). We thus
take 8(x,y) to be dir'(tx,ty).

Remark. The fact that (P*,R*) is a Kleene pair is a stronger con-
clusion than (P,-R) being a Kleene pair because for any system S
with nuclei P and J?, if the pair (P*,R*) is a Kleene pair, then so is
(P,#), because (P*,jR*) is reducible to (P,R) under r(x,x).

Theorem 6 has an interesting consequence.

Theorem 7. Suppose S is effectively a Rosser system for sets and
S is consistent. Then there is a recursive function S(x,y) such that
given any consistent axomatizable extension S' ofS and any numbers
i and j, such that Wj is the set of Godel numbers of the provable
formulas of S' and u>j is the set of Godel numbers of the refutable
formulas ofS',6(i,j) is the Godel number of a sentence undecidable
in S'.

Proof. Exercise. [A stronger version of this theorem will be proved
in a later chapter.]

Theorem S.IfS is a Rosser system for binary relations, then S is
effectively a Rosser system for sets.
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Proof. Suppose S is a Rosser system for binary relations. The rela-
tions x £ u>Ky and x € ^Ly are i.e.; hence there is a formula H(vi, v-z)
which strongly separates the relation x € URy A x ^ U>LV from the
relation x € ULy A x £ UKy Thus H(v\,v^) strongly separates the
relation x G u>Ky — ̂ >Ly from the relation x € ULV — WKy • Then for
any numbers n, i and j, if n G cjt- — cuy, then n 6 WK-J(,-J\ — <jJi,J(i,f\'i
hence H[n, J ( i , j ) ] is provable in S. Similarly n € Uj — u>i implies
that H[n,J(i,j) is refutable in S. So for any numbers i and j, the
formula H[vi,J(i,j)] (i.e. the formula Vv2(v2 = J(i,j) D ^(^1,^2))
strong separates u;; - Wj from u>j — w,-. We let TT(Z,J) be the Godel
number of H [ v i , J ( i , j ) ] . The function ?r(a;,j/) is recursive and is a
Rosser function for <S.

Remark. We know that the system (Q) (in fact every consistent
axiomatizable extension of (-R)) is a consistent Rosser system (for
sets and relations). Hence by Theorem 8, it is effectively a Rosser
system for sets, and so by Theorem 6, its pair (P,R) of nuclei is
completely E.I. (in fact a Kleene pair). We thus have a second proof
of the existence of a Kleene pair of r.e. sets (which does not use a
Kleene pair already constructed).

Exercise 1. Suppose that there is a recursive function tp(x,y) such
that for any disjoint r.e. sets uii and u>j,ij}(i,j) is the Godel number
of a formula that strongly separates (u^Wj) in <S. Prove that S is
effectively a Rosser system for sets.

Exercise 2. Call S an effective Rosser system for n-ary relations if
there is a recursive function TT(X,I/) such that for all i and j, w(i,j)
is the Godel number of a formula H(v\,... ,vn} which strongly sepa-
rates Rf — R'j' from R^ — Rf in S. Prove that for any positive n, if S is
a Rosser system for relations of n +1 arguments, then «S is effectively
a Rosser system for relations of n arguments. Conclude that if S is a
Rosser system (for sets and relations), then <S is effectively a Rosser
system (for sets and relations. [Thus every axiomatizable extension
of (R) is effectively a Rosser system (for sets and relations).]

Effectively Exact Rosser Systems. We will say that i r ( x , y ) is
an exact Rosser function (for sets) for S if for any disjoint r.e. sets
u>i and Uj, ir(i,j) is the Godel number of a formula that exactly
separates (ui,uij) in S. We shall say also that <S is effectively an
exact Rosser system (for sets) if there is an exact Rosser function for
S.

The following result will be needed in a later chapter.
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Theorem 8.1. If S is an exact Rosser system for binary relations
(i.e. if any two disjoint r.e. binary relations are exactly separable in
S), then S is effectively an exact Rosser system for sets.

Proof. Suppose S is an exact Rosser system for binary relations.
Then the relation "x € UKy before x € u^j," is exactly separated
from the relation "x € ULy before x e <^Ky" by some formula
H(VI,VZ). Then (by an argument similar to part of the proof of
Theorem 8) for any numbers i and j, the formula H[VI, J ( i , j ) } ex-
actly separates x:x Go;,- before x 6 Uj from x: x 6 u>j before x € w,-.
If Ui and u>j are disjoint, then the above two sets are Wj and MJ re-
spectively. We thus let TT(I, j) be the Godel number of H[vi,J(i,j}\,
and now ir(x,y) is an exact Rosser function for S.

II. Double Universality

§7. Double Universality. We shall call a disjoint pair
(I?!,.82) doubly universal—abbreviated D.U.—if every disjoint pair
(AI,AZ) of r.e. sets is reducible to (B\,Bi). We shall say that a
disjoint pair (Bi,Bz) is semi-D.U. if every disjoint pair of r.e. sets
is semi-reducible to (Bi,Bz). [In the next chapter, we will prove
the fundamental result that every semi-D.U. pair of r.e. sets is D.U.
This will afford an alternative proof to that of Shepherdson that
every consistent axiomatizable extension of (K) is an exact Rosser
system for sets; the two proofs will generalize in different directions.]

From Theorem 1 and Lemma AI we at once have

Theorem 9. If (A\,Az) •'* semi-D.U., then (Ai,Az) is a Kleene
pair (and, hence, is completely E.I.)

We will call a pair (B\, B?) (not necessarily disjoint) D.U.+ if every
pair of r.e. sets (whether disjoint or not) is reducible to (Bi,Bz).

We now wish to construct a pair (VijV-j) of r.e. sets such that
(VijV-j) is D.U.+ and we wish to construct a (disjoint) D.U. pair
(Ui, Uz) of r.e. sets.

We take V\ to be the set of all numbers J(«7(x,7/),z) such that
z € uy and take Vz to be the set of all numbers J ( J ( x , y ) , z) such that
z G ux. The pair (Vi, Vz) is D.U.+ because for any numbers i and j,
the pair (w,-,u;j) is reduced to (V^V^) by the function J ( J ( j , i ) , x ) .

We take U\ to be the set of all numbers J ( J ( x , y ) , z ) such that
z G wy before z 6 ux,

 aQd take Uz to be the set of all numbers
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J(J(x,y),z) such that z € u>x before z 6 Uy.
Now suppose u>i and u>j are disjoint. Then for any x

Also

Therefore J(J(j,i),x) reduces (a;,-,ajj) to (Ui,U-z) and so (Ui,Uz) is
doubly universal. And so we have proved:

Theorem 10.

(a) The pair (Vi, V2) of r.e. sets is D.U.+
(b) The (disjoint) pair (Ui, Ui) of r.e. sets is D.U.

The Pair (U{, U^). We let U[ = x : J(x,x) € Ui and we let

For any x, i and j we have

and similarly

Then by (a) of Lemma A2 (taking J for / and / for </), J(x,y) is a
Kleene function for (fi,^). This is not too surprising considering
that (U{,U%) is the very pair (K\,K-})\ (cf. Exercise 3 below).

Exercise 3.

1. Show that for any numbers x,y,z and w, if w = J(J(x,y),z)
then a; = KKw and y = i/fw and z = Lw.

2. Show from this that U\ is the set of all numbers J(x,y) such
that y G a;̂  before y € U>KXI and C/2 is the set of all numbers
J(cc,j/) such that y G 0;^-^ before j/ € WLW

3. Show from this that U[ = KI and U£ = K2.

Exercise 4. Call a disjoint pair (A,B) uniformly D.U. if there is a
recursive function f(x,y,z) such that for all numbers i and j such
that uji and Wj are disjoint, f(i,j,x) reduces (w,-,Wj) to (A, 5).

Prove that every D.U. pair is uniformly D.U.

Exercise 5. Show that if (A,B) is uniformly D.U., then there are
recursive functions f(x,y) and g(x,y~) such that for all numbers i
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and j for which uii and uj are disjoint, g ( f ( i , j ) , x ) reduces (w,-,Wj)
to (A,B).

///. Double Generativity

§8. Doubly Generative Pairs. We shall call a disjoint pair
(Ai, A2) doubly generative—abbreviated D.G.—if there is a recursive
function <j>(x,y)—called a D.G. function for (Ai, A2)—such that for
any numbers i and j for which Ui and u>j are disjoint, the following
two conditions both hold:

1- <J>(iJ) € AI <-» <t>(i,j] € u;,-,
2. <j)(i,j) G A2 <-> <f>(i,j) G Wj.

Proposition 3. 7/(Ai,A2) is doubly generative, then A\ and A2

are each generative.

Proof. Let <p(x,y) be a D.G. function for (Ai ,A2). Let a be any
index of the empty set. Then for any z, o^ is disjoint from u>a and,
hence, by (1),

Therefore, 0(z,a) is a generative function for A\. Similarly, by (2),
<f>(a,x] is a generative function for A%.

Proposition 4. If(f>(x,y) is a D.G. function/or (Ai, A2), then<f>(y,x)
is a D.G. function for (A2, AI).

Proof. Obvious.

Exercise 6. Show that the pair (A'i, /i'2) is D.G. under the function
J(y,x).

The next theorem is basic.

Theorem 11. 7/(A!,A2) is completely E.I. and AI and A? are both
r.e., i /«en(Ai,A2) is D.G. Moreover, if A\ and A2 are both r.e., then
for any complete E.I. function 6(x, y) for the pair (A2, AI), there are
recursive functions ti(x) andt-^(x) such that ^(i2(x),f1(?/)) is a D.G.
function for (Ai, A2).

Proof. Suppose 6(x,y) is a complete E.I. function for (A2 ,Ai) , and
A2 and AI are both r.e. By the iteration theorem, there are recursive
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functions ti(y) and t^y) such that for all n,

(we take ii(t/) to be an iteration function for the relation

t?(y) is an iteration function for the relation x 6 u>y V x 6 ^2)- We
show that the function 6 ( t - i ( x } , t i ( y } ) is a D.G. function for (A\,Az).

Take any numbers i and j and let k = 6(t2(i),ti(j)). Since we
know that A2 C wt2(j\ and AI C wtl(j) and 6(x,y) is a complete E.I.
function for (Ai,Ai), then

We are to show that if a;,- and uj are disjoint, then k € AI <-* A; 6 w,-
and A; € ^2 <->• A; € w^. So suppose w,- and Wj are disjoint. Suppose
also that k £ AI and k € ^(j)- Then k € wta(,-). So k € ^2 Uwj. But
k ^ ^2 (since A2 is disjoint from AI) and, hence, k € a;,-. Conversely,
suppose A; 6 u;,-. Then k 6 ^i2(i) (since a;,- C wf2(,-)). Hence A; 6 I^>t1(j)
and A; 6 Wj U A\. But A; ^ Uj (since Uj is disjoint from w,-) and,
hence, A; e ^Ij. This proves that k € AI <-» A; 6 a;,-. The proof that
A; 6 A.2 <-»• A; 6 Wj is symmetric.

Since there exists a completely E.I. pair of r.e. sets, we have:

Corollary 1. There exists a D.G. pair of r.e. sets.

Remark. This corollary was established more easily by Exercise 6.

Corollary 2. I f ( A i , A - 2 ) is completely E.I. and AI and A? are both
r.e., then AI and A% are both completely creative sets.

Proof. By Theorem 11 and Proposition 3 (cf. §1 of Chapter 4).

Exercise 7. The last corollary can be proved more simply and with-
out appeal to the notion of double generativity: Let 8(x,y) be a
complete E.I. function for (A\,Ai) and let A\ and AI be r.e. Let a
be any index of A\ and let t(y) be a recursive function such that for
all i, ^t(i) — t^i U AI. Show that S(a,t(x)~) is a generative function
for AI.

and
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Exercise 8. Prove that if (Ai,A2) is E.I. (not necessarily com-
pletely E.I.) and AI and A2 are both r.e., then AI and A2 are both
creative sets [Myhill].

A particularly important consequence of Theorem 11 for purposes
of the next chapter is the following theorem.

Theorem 12. If (A\, A2) is semi-D.U. and AI and Ay are both r.e.,
then (Aj,A2) is D.G.

Proof. If (Ai,A2) is semi-D.U., then it is completely E.I. by The-
orem 9. If also AI and A2 are both r.e., then (Ai,A2) is D.G. by
Theorem 11.

*Semi-D.G. Pairs. In the next chapter, we will prove a result that
implies that every D.G. pair (Ai, A2) is completely E.I. (whether AI
and A2 are r.e. or not). However, this can be shown by a more direct
argument which also establishes something stronger: Call a recursive
function g(x,y) a semi-D.G. function for a disjoint pair (Ai,A2) if
for all numbers i and j, such that u;t- is disjoint from u>j, the following
two implications hold:

1- 9(iJ) € u>,- =>• g(ij) € AI,
2. g(i,j) € Uj =» g(i,j) € A2.

If we replace the implications by equivalences, we get the definition
of a D.G. function, so every D.G. pair is semi-D.G. (i.e., has a semi-
D.G. function).

Theorem 13. //(Ai,A2) is semi-D.G., then (Ai,A2) is a Kleene
pair.

Proof. (Sketch) Suppose g(x,y) is a semi-D.G. function for (Ai, A2).
Let o-(x,y) be the effective separation function of Theorem 4, Chap-
ter 3. Then the function g(o-(x,y),o-(y, x ) ) can be shown to be a
Kleene function for the pair (A2,Ax).

Corollary. Every D.G. pair is completely E.I. (in fact is a Kleene
pair).

Exercise 9. Complete the proof of Theorem 13.

§9. Reducibility.

Theorem 14.
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(a) If (AI,AZ) is D.G., (Ai,A2) is reducible to (Bi,B2), and
and BI are disjoint, then (Bi,Bz) is D.G.

(b) Every D.U. pair is D.G.

Proof.

(a) Assume hypothesis. Let g(x, y) be a D.G. function for (A
and let /(#) be a reduction of (A\,Ai) to (B\,B%). Let t(y) be
an iteration function for the relation f ( x ) € u>y (thus we have
ut(y) = f ~ l ( u y ) ) - We show that f g ( t x , t y ) is a D.G. function
for (BI,BI). Suppose w,- and Uj are disjoint. Then /~1(wt-) and
f~l(u>j) are disjoint, so uj^ and Wt(j) are disjoint. Therefore,

it follows that

(b) This follows from (a) and the existence of a D.G. pair of r.e.
sets (Corollary 2 to Theorem 11, or alternatively, Exercise 6).

§10. Sentential Double Generativity.

Theorem 15. If S is a consistent axiomatizable Rosser system for
sets, then the pair (P,R) of its nuclei is D.G.

Proof. Assume hypothesis. Then (P, R) is completely E.I. by The-
orem 5. Since S is axiomatizable, the sets P and R are both r.e.;
hence (P,K) is D.G. by Theorem 11. [Alternatively, the hypothesis
implies that (P,R) is a semi-D.U. pair of r.e. sets and is, therefore,
D.G. by Theorem 12.]

(since g ( x , y ) is a D.G. function for (.Ai, A2)). Therefore

(since /(#) reduces A\ to B\). This proves that

Similarly, since

 B2

,A2)
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Sentential Double Generativity. We shall call the system S sen-
tentially D.G. if there is a D.G. function g(x,y) for (P,R) with the
added property that for any numbers i and j, the number g(i,j) is
the Godel number of a sentence. This implies that for any i and
j for which u;,- and uij are disjoint, g(i,j) is the Godel number of a
sentence X such that X is provable in S iff its Godel number is in u>,-,
and X is refutable in S iff its Godel number is in Wj! The systems
(R), (Q) and P.A. (if consistent) enjoy this nice property by virtue
of the following theorem.

Theorem 16. If S is a consistent axiomatizable effective Rosser
system for sets, then S is sententially D. G.

Proof. Assume hypothesis. Then by (b) of Theorem 6, there is a
complete E.I. function (in fact a Kleene function) S ( x , y ) for (P,R)
such that for all i and j,6(i,j) is the Godel number of a sentence.
Since P and R are both r.e., then by Theorem 11 there are recursive
functions ti(x) and tz(x) such that the function S(t\(y),t-2(x)) is
a D.G. function for (P,R). So we take g(x,y) to be <5(fi(t/),<2(a;)).
Since 6(x, y) is always a sentence-number, the same is true of g(x, y).

Corollary. Every consistent axiomatizable extension of (R) is sen-
tentially D.G.

Remark. A much stronger result will be proved in Chapter 12.



Chapter VI

Universal and Doubly Universal Systems

We now turn to two theorems (Theorems A and B below) that will
play a major role in this study. We will give three different proofs of
them in the course of this volume, since each proof reveals certain
interesting features of its own.

Theorem A. If(A\,A%) is semi-D.U. and AI and AI are both r.e.,
then AI and AZ are both universal sets.

Theorem B. I f ( A i , A y ) is semi-D.U. and AI and A^ are both r.e.,
then (Ai,A2) is D.U.

Of course, Theorem A is a trivial corollary of Theorem B, but
our proofs of Theorem A reveal facts not revealed by our proofs of
Theorem B.1

We give our first proofs in this chapter. After each proof, we es-
tablish a metamathematical corollary: Theorem A yields the result
of Ehrenfeucht-Feferman [1960] that for any consistent axiomatiz-
able Rosser system <S for sets in which all recursive functions of one
argument are strongly definable, all r.e. sets are representable in S.
Theorem B yields the stronger result of Putnam-Smullyan [1960]—
that any such system S is an exact Rosser system for sets. This
result is apparently incomparable in strength with Shepherdson's
result that any consistent axiomatizable Rosser system for binary
relations is an exact Rosser system for sets. Both results, of course,
yield different proofs that every consistent axiomatizable extension
of (R) is an exact Rosser system for sets.

1 Also, in the next chapter we wil prove a strengthening of Theorem A which does not
appear to be derivable from Theorem B.

82
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/. Universality

§1. Generativity and Universality. We have shown that
every universal set is generative. Our first proof of Theorem A will
be based on the converse.

Theorem 1. Every generative set is universal.2

We will, in fact, prove something considerably stronger which will
have other applications as well.

Consider a collection C of r.e. sets. Following Smullyan (1963), we
will say that a set A is generative relative to C if there is a recursive
function (j>(x) — called a generative function for A relative to C — such
that for any number i for which u>»- € C,

What we have previously called generative is, thus, generative with
respect to the collection of all r.e. sets. We will show that a sufficient
condition for a set a to be universal is that it be generative relative
to the collection of all recursive sets. In fact, we will show the
more surprising fact that if a is generative relative to the collection
consisting of just the two sets N and 0, then a is universal!

For any set a and any number a:, the condition that

is obviously equivalent to the condition that x 6 a (since x € N),
and the condition that

is equivalent to the condition that x £ a (since x £ 0). Therefore,
the following proposition is obvious.

Proposition 1. a. is generative relative to {N, 0} under <j)(x) (4>(x)
recursive) iff for any number i

2This says that a set whose complement is completely productive must be universal.
We will later prove Myhill's stronger result that a set whose complement is productive
must be universal. The proof of this stronger theorem requires a fixed-point argument
(the recursion theorem) that we will study later. Though Theorem 1 is weaker than
that of Myhill, it is still strong enough to yield Theorem A (and hence strong enough
to establish the Bhrenfeucht-Feferman theorem).
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(1) ui = N =» 0(i) 6 a;
(2) Ui = 0 =*• #«) £ a.

Thus, a generative function for a relative to {N, 0} is nothing
more nor less than a recursive function <j>(x) which maps every index
of the set TV of all natural numbers to a number inside a and every
index of the empty set to a number outside a. Now we need a lemma:

Lemma 1. For every r.e. set A, there is a recursive function t(y)
such that for every number i

(1) IfieA, thenut(i) = N,
(2) Ifi£A, then u;i(i) = 0.

Proof. Let A be r.e. Let M be the set of all ordered pairs (z, y ) such
that y £ A. Then M is an r.e. relation and for all x and y

By the iteration theorem, there is a recursive function t(y) such
that for all i, u>t^ = x : M(x,i). Hence ut^\ = x : i € A. Thus, for
any x, x € wt(,-) *-* i £ A. If i £ A, then for every x, x € ^t(«> which
means wt(j) = N. If i $ A, then for every x, x £ wt(,-\, which means
u;t(n = 0. This proves the lemma.

Now we prove the following strengthening of Theorem 1.

Theorem 1*. If a is generative relative to {N, 0), then a is univer-
sal.

Proof. Let <j>(x} be a generative function for a relative to {JV, 0}. Let
A be any r.e. set that we wish to reduce to a. Let t(y) be a recursive
function related to A as in Lemma 1. Then for any number i

1. i 6 A =>• o;t(j-) = N (by Lemma 1),
=>• <?f>/z € a (by Proposition 1),

2. i ^ yl =» u>t(,-) = 0 (by Lemma 1),
=> (j)ti £ a (by Proposition 1).

By 1 and 2, the recursive function <f>t(x) reduces A to a. This
concludes the proof.

Now we prove Theorem A. Theorem 1, of course, follows from
Theorem 1*. Now suppose (Ai,A%) is a semi-D.U. pair of r.e. sets.
Then (Ai,A2) is D.G. (by Theorem 12, Chapter 5); hence AI and
AI are both generative (by Proposition 3, Chapter 5) and so A\ and
AI are both universal by Theorem 1.
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§2. The Ehrenfeucht-Feferman Theorem. Now we con-
sider some metamathematical applications of Theorem A. First we
give a lemma.

Lemma 2. IfS is a consistent axiomatizable Rosser system for sets,
then some semi-D.U. pair of r.e. sets is exactly separable in S.

Proof. Assume hypothesis. Take any D.U. pair (Ai,A^) of r.e. sets.
Since S is a Rosser system for sets, then (Ai, A%) is strongly separable
in S by some formula F(v\). Let B\ and B? be the sets represented
in S by F(VI), ~ F(VI) respectively. Since S is consistent, BI and
BI are disjoint. Also A\ C BI and A% C B%. Therefore (B\,Bi) is
semi-D.U. (because (Ai,Az) is semi-D.U., being D.U.). Since <S is
axiomatizable, the sets BI and BI are both r.e. Of course, (Si,j52)
is exactly separated in S by F(VI).

Theorem AI. Suppose S is a consistent axiomatizable Rosser sys-
tem for sets. Then

(a) Some universal set is representable in S.
(b) If also all recursive functions of one argument are strongly de-

finable in S, then all r.e. sets are representable in S.

Proof. Assume hypothesis.

1. By the above lemma, some semi-D.U. pair (Bl,B2) of r.e. sets
is exactly separable in S. By Theorem A, the set B\ (and also
J02) is universal. So B\ is a universal set representable in S.

2. Suppose also that all recursive functions of one argument are
strongly definable in S. Now take any r.e. set A. Since BI
is universal, then A is reducible to BI, so there is a recursive
function f ( x ) such that A = f~l(B\). By hypothesis, f ( x )
is strongly definable in S. Then by Th. 11.2, Ch. 0, the set
f~*(B\) is representable in S. Thus A is representable in S.

Statement (b) of Theorem AI is the Ehrenfeucht-Feferman Theo-
rem.

//. Double Universality

§3. Double Generativity and Double Universality. The
following "double analogue" of Theorem 1 will be the basis for our
first proof of Theorem B.
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Theorem 2. I f ( A i , A2) is D.G., then (Ai,A2) is D.U.

Again we will prove something stronger. Let T> be a collection
of ordered pairs of r.e. sets. A disjoint pair (A\,A-2) will be said to
be doubly generative relative to D if there is a recursive function
g(x,y)—which we call a D.G. function for (A\,Ai) relative to Z>—
such that for any numbers i and jf, if (u7,-,a;j) € T>, then

and

To say that (A\,At) is doubly generative (as previously denned)
is to say that (Ai, A2) is D.G. relative to the collection of all disjoint
pairs of r.e. sets. We will show that a sufficient condition for a pair
to be doubly universal is that it be D.G. relative to the collection of
all disjoint pairs of recursive sets. We will also show that if (A^^A^)
is D.G. relative to the collection of all complementary pairs (C, C)
of recursive sets, then (Ai,Ay) is semi-D.U. [This fact will have an
interesting metamathemtical application.] Actually, we will show
stronger versions of both these facts: We let Z>2 and £>3 be the
following finite collections of disjoint pairs of r.e. sets.

We will prove

Theorem 2*.

(a) If(Ai,Az) is D.G. relative to T>2, then (Ai,A2) is semi-D.U.
(b) J/(Ai,A2) is D.G. relative to £>3, then (Ai,A2) is D.U.

Of course (b) of Theorem 2* implies Theorem 2. In preparation
for the proof, let us consider the following three conditions which
may or may not hold for a given recursive function g(x,y) and a
given disjoint pair (0:1,0:2) of sets.

C\ For all i and j, if uji = N and u>j = 0, then g(i,j) € ot\.
C-2 For all i and j, if w,- = 0 and u>j — N, then g(i,j) € 0:2-
63 For all i and j, if wt- = 0 and Uj = 0, then g(i,j) £ «i U 0:2.

Proposition 2.

(1) (0:1,0:2) is D.G. relative to D? under g(x,y) iff conditions C\
and Ci both hold.
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(2) (0:1,0:2) is D.G. relative to X>3 under g(x,y) iff conditions Ci,
Ci and C$ all hold.

We leave the verification of Proposition 2 to the reader. [Again,
the crucial point is that

(a; € N <->• x € «i) <->• x £ 01; (a; £ 0 <-»•*€ 01) *-* a; ^ cti,

and the same with 0:2-]

Proo/ o/ Theorem T:

(a) Suppose that g(x,y) is a D.G. function for (01,02) relative to
Z>2- Then conditions C\ and C*2 both hold. Let (Ai,A2) be
any disjoint pair of r.e. sets that we wish to "semi-reduce" to
(01,02). By Lemma 1, there is a recursive function t\(y) such
that for all i G A\, ^t(i) — N, and for all i $ A\, Utti) = 0-
Again by Lemma 1, there is a recursive function <2(y) such that
for any i 6 A2, Utt(i) = N an(i for any i £ A2,^(i) = 0-
We show that the function g ( t i ( x ) , t - 2 ( x ) ) is a semi-reduction of
(Ai,A2) to (oi,o2).

(1) Suppose i 6 A\. Then i $. A<2 (since AI and A2 are disjoint)
and so wtl(,-j = JV and wt2(j) = 0. Hence by Ci,

(2) Suppose i G A2. Then » §! AI, so wtl(,-) = 0 and ijJt^(i) = N.
Hence by Cy,

Therefore, we see that p(ti(x),f2(a;)) is a semi-reduction of
(Ai,A2) to (01,02). This proves (a).

(b) Suppose g(x,y) is a D.G. function for (oi,a2) relative to X>3.
Then condition Cs also holds. Now take any i £ AI U A2. Then
i £ A\ and i $. A2, so ̂ tl(i) — 0 an<i Wi2(i) = 0- Then by Cs,

This, with (1) and (2), implies that the function g(ti(x),ti(x}}
is a reduction of (Ai, A2) to (01,02).

Proof of Theorem B: Theorem 2, of course, follows from (b) of
Theorem 2*. Now suppose (01,02) is semi-D.U. and 01 and o2 are
both r.e. Then (oi,o2) is D.G. (by Theorem 12, Chapter 5) and so
(oi,o2) is D.U. by Theorem 2.
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Before turning to the metamethematical applications of Theo-
rem B, let us note some other consequences of Theorem 2.

Corollary (of Theorem 2). If (A, B) is completely E.I. and A and
B are r.e., then (A,B) is D.U.

Proof. If (A,B) is completely E.I. and A and B are r.e., then (A,B)
is D.G. (by Theorem 11, Chapter 5) and, hence, (A, B) is D.U. by
Theorem 2.

Theorem 2 also affords another proof that every D.G. pair is a
Kleene pair (and, hence, is completely E.I.). If (A, B) is D.G., then
it is D.U. (by Theorem 2). Hence it is certainly semi-D.U. and a
Kleene pair by Theorem 9, Chapter 5.

We now see that for any disjoint pair (A,B) of r.e. sets, the fol-
lowing conditions are all equivalent: (1) (A,B} is a Kleene pair; (2)
(A,B) is completely E.I; (3) (A,B) is semi-D.G.; (4) (A, B) is D.G.;
(5) (A,B) is semi-D.U.; (6) (A, B) is D.U.

§4. Metamathematical Applications. Using Theorem B
in place of Theorem A, we can obtain the following strengthening of
Theorem AI.

Theorem BI. Suppose S is a consistent axiomatizable Rosser sys-
tem for sets. Then

(a) Some D. U. pair is exactly separable in S,
(b) If also all recursive functions of one argument are strongly de-

finable in S, then S is an exact Rosser system for sets.

Proof. Assume hypothesis. By Lemma 2 some semi-D.U. pair (
of r.e. sets is exactly separable in S.

(a) By Theorem B, the pair (J?i,J?2) is D.U.
(b) Now suppose the additional hypothesis of (b). Let (A

be any disjoint pair of r.e. sets. Since (B\,Bi} is D.U., then
there is a recursive function f ( x ] such that AI = f~l(B\) and
AI = f~^(B-2). Then (A\,A<2) is exactly separable in S (by (2)
of Th. 11.2, Ch. 0, since f ( x ) is strongly definable in S).

Statement (b) of Theorem BI is the Putnam-Smullyan Theorem.

(B1,B2)

,A2)



Chapter VII

Shepherdson Revisited

Theorems A and B of the last chapter were proved using previous
results about generativity, Kleene pairs, complete effective insepa-
rability, and double generativity. Yet the two theorems made no
mention of these notions; they referred only to the notions of uni-
versality, double universality and semi-double universality. [These
three notions, by the way, unlike the four notions mentioned above,
were denned without reference to any indexing; they are what we
would call index-free.] Is it not possible to give more direct proofs of
Theorems A and B that do not require all the antecedent machin-
ery of Chapters 4 and 5? We are about to show that it is possible;
we will simply transfer Shepherdson's arguments about first-order
systems to recursion theory itself. We shall prove some "recursive
function-theoretic" analogues of Shepherdson's theorems which will
provide new proofs of Theorems A and B (in fact, a strengthening
of Theorem A will result).

§1. Separation Functions. Let (a,/?) be a disjoint pair of
sets (not necessarily r.e.). By a separation function for (a,/3), we
shall mean a recursive function S(x,y,z) such that for any r.e. rela-
tions Mi(x,y) and M%(x,y) there is a number h such that for all x
and y

(1) MI (a:, y) A ~ M2(x,y] => S(h,x,y) G a,
(2) M2(*,»)A ~ Mi(z,p) => S(h,x,y) 6 ft.

As an example, if <S is any Rosser system for binary relations, then
the function r2(a;, y, z) is a separation function for the pair (P, R) (we
recall that r z ( x , y ^ z ) - Godel number of Ex[y,z\).

df

89
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We now employ the doubly universal pair (U\,Uz) of r.e. sets
constructed in Chapter 5.

Lemma. For any r.e. sets A\ and A^ there is a number h such that
the function J(h,x) is a semi-reduction of (Ai — A^^A^ — AI) to

Proof. For any r.e. sets AI and A2, let i be an index of AI and j
be an index of A%, and let h = /(_;', i). For any x, if x 6 u»,- — MJ,
then x G u>; before x € Wj. Hence J(J(j,i),x) £ Ui. IS x £ Wj — w,-,
then a; e Wj before a; € Wj. Hence J(J(j,i),x) € #2- So J(h,x) is a
semi-reduction of (^4i — ̂ 2, ̂ 2 — -Ai) to (£/i, f / j )-

Proposition 1. /f(a,/3) is semi-D.U. (a,/3 are not necessarily r.e.),
then there is a separation function S(x,y,z) for (a,/3).

Proof. Suppose (a,/?) is semi-D.U. Then there is a recursive function
f(x) such that f ( x ) is a semi-reduction of (t/i, ̂ 2) to (a,/3). We let
5(a;,j/,^) be the recursive function f J ( x , J ( y , z ) ) and we will show
that it is a separation function for (a,/3).

Take any r.e. relations Mi(x,y) and M2(x,y). Let AI be the set
of all numbers J ( x , y ) such that Mi(x,y) and let A% be the set of all
numbers J ( x , y ) such that M^(x^y}. By the above lemma, there is a
number h such that J(h,x} is a semi-reduction of (A\ — A<2,A-2 — A\)
to (Ui,Uz)' Therefore, f j ( h , x ) is a semi-reduction of

to (a,/3). Therefore, for any numbers x and y:

Theorem 1. // f/zere is a separation function for (a, a) and a z's
r.e., then a is universal.

Proof [after Shepherdson]. Suppose S(x,y,z) is a separation func-
tion for (a, a) and a is r.e. Let A be any r.e. set. We will show that
A is reducible to a.

Define Mi(x,y) iff x 6 A and define M^(x,y) iff S(y,x,y) £ a.
Since yl and a are r.e., then the relations Mi(x,y) and M?(x,y) are
r.e. Then there is a number h such that for all x and ?/

(U1,U2).
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1. x € A A S(y,x,y) £ a => S(h,x,y) 6 a,
2. S(y, z , 2 / ) € a A a ; £ A = $ > £(/>, x, y) $ a.

Taking h for y, it follows by propositional logic that

and, therefore, the function S(h,x,h) reduces A to a.

From Theorem 1 and Prop. 1, we now obtain the following strength-
ening of Theorem A.

Theorem A*. 7/(a,/3) is semi-D.U. and a is r.e. (without (3 being
necessarily r.e.), then a is universal.

Proof. Suppose (a,/3) is semi-D.U. and a is r.e. By our definition of
semi-D.U., a and /3 are disjoint, so /3 C a. Since (a,/3) is semi-D.U.,
so is (a,a). Then by Proposition 1, there is a separation function
for (a, a) and since a is r.e., a is universal by Theorem 1.

§2. Function-Theoretic Analogue. Next we consider a re-
cursive function-theoretic analogue of Shepherdson's exact separa-
tion theorem.

Theorem 2. If there is a separation function for ( a , / 3 ) and a and
/3 are both r.e., then (a,/?) is D.U.

Proof. Suppose S(x,y,z) is a separation function for (a,/?) and a
and /3 are both r.e. Let (A, f?) be any disjoint pair of r.e. sets that
we wish to reduce to (a,/3). The relation x G A V S(y, x, y) € f3 and
the relation x £ B V S(y, x, y) € a are both r.e., so there is a number
h such that for all x and y

Taking h for j/, it follows by propositional logic that

and that

and so the function S(h,x,h) reduces (A,B) to (a,/3).
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Remark. Theorem 2 provides another sufficient condition for a pair
of r.e. sets to be D.U. It, with Proposition 1, of course, has Theo-
rem B as a corollary.

We now see that the Ehrenfeucht-Feferman theorem and the
Putnam-Smullyan theorem can be proved by Shepherdsonian meth-
ods, since we have proved Theorems A and B by Shepherdsonian
methods. Our proofs of Theorems 2 and 3 are so close to Shep-
herdson's proofs of his representation and exact separation theorems
that it should be possible to derive both from a common construc-
tion. This is, indeed, possible; one way is by using the abstract
representation systems of T.F.S. We plan to pursue this further in a
companion volume, "Diagonalization and Self-Reference."

We have now given two proofs of Theorems A and B. For our
third pair of proofs we will need Kleene's recursion theorem and the
author's double analogue (the double recursion theorem), to which
we turn in the next two chapters.

§3. More on the Shepherdson and Putnam-Smullyan
Theorems. A still more direct and simple proof of the Putnam-
Smullyan theorem will now be given. It is along purely Shepherdson
lines and uses virtually no recursion theory (in particular, it avoids
even the use of the D.U. pair (C/i,^)). Moreover, the proof yields
a stronger result—namely that if S is a consistent axiomatizable
Rosser system for sets, then for S to be an exact Rosser system for
sets, it is enough that for each number h, the function J(h,x) (as a
function of #) is strongly definable in S. [And thus it is more than
enough that all EQ- functions be strongly definable in S.]

We shall first prove some variants of Shepherdson's lemma and
theorem that will have other applications later on. The following
lemma is a variant of Lemma 2* of Ch. 0. Its proof is similar and
left to the reader.

Lemma 2". Suppose Ri(x,y) and R^(x,y) are disjoint relations.
Let B\ be the set of all numbers J(y, x} such that

Ri(x,y) V ( E y [ J ( y , x ) ] is refutable in S).

Let BZ be the set of all numbers J(y, x) such that

R2(x,y) V ( E y [ J ( y , x ) ] is provable in S).

Then if Eh(vi) is a formula that strongly separates B\ — B% from
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J32 — BI in S, then, for any number n, we have:

(1) Eh(J(h,n)) is provable in S iff Ri(n,h).
(2) Eh(J(h,n)~) is refutable in S iff R?(n, h).

If, in the above lemma, the relations Ri(x,y) and R%(x, y) are both
r.e., and if S is axiomatizable, then the sets B\ and B^, are r.e., and
so by the lemma we get the following variant of Theorem S2 of Ch. 0.

u

Theorem S2. If S is a consistent axiomatizable Rosser system for
sets, then for any disjoint r.e. relations R\(x,y) and _R2(a:,y), there
is a formula Eh(yi) such that for any number n, Eh(J(h,n)) is prov-
able in S iff Ri(n,h}, and is refutable in S iff R^n^h).

As a corollary, we have the following variant of Shepherdson's
theorem 82:

Theorem S2. Under the same hypothesis, for any disjoint r.e. sets
A\ and A% there is a formula jff(ui) and a number h (in fact the
Godel number of H(v\)) such that for any number n, H(J(h,n)) is
provable iff n £ A\ and is refutable iff n € A% .

H
Proof. By Theorem S2, taking Ri(x,y) iff x € A\ and R^(x,y) iff
x

From Theorem S2 we then get:

Theorem P.S.*. a Suppose S is a consistent axiomatizable Rosser
system for sets and that for every number h, the function J(h,x) is
strongly definable in S. Then S is an exact Rosser system for sets.

Proof. Assume hypothesis. Given disjoint r.e. sets A\ and A2, take
H(VI) and h as in the conclusion of Theorem S2. Since, by hypoth-
esis, the function J(h,x) is definable in «S, by Theorem 11.1, Ch. 0,
there is a formula F(VI) such that for every n,

is provable in S. Then F(VI) exactly separates (^1,^4.3) in

1 An extension of the Putnam-Smullyan theorem.

S.
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Recursion Theorems

We have proved that the complement of every completely produc-
tive set (in other words, every generative set) is universal, and this
was enough to establish Theorem A of Chapter 6. In Chapter 10
we will prove Myhill's stronger result that the complement of every
productive set is universal. For this proof, we will need the recursion
theorem of this chapter.

Recursion theorems (which can be stated in many forms) have
profound applications in recursive function theory and metamathe-
matics, and we shall devote considerable space to their study. To
illustrate their rather startling nature, consider the following math-
ematical "believe-it-or-not's": Which of the following propositions,
if true, would surprise you?

1. There is a number n such that un = o;n+1.
2. There is a number n such that <jjn = w3n2+4n+7.
3. For any recursive function /(#), there is a number n such that

Un = Uf(n).

4. There is a number n such that un contains n as its only element.
5. For any recursive function /(#), there is a number n such that

"n = {/(»)}•
6. There is a number h such that for every number x,

[In other words, the set of all x such that ux contains h has h
as an index!]

7. There is a number h such that u>h = x : Rh(x,h).
8. For any r.e. relation R(x,y), there is a number n such that

u>n = x : R(x,n).

Well, believe it or not, all the above propositions are true! At first

94
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sight, it might appear that these seemingly coincidental properties
are due to some special property of our indexing, but as a matter of
fact, they all hold for any indexing we choose, provided the indexing
is maximal (in the sense of Exercise 10, Chapter 3).

/. Weak Recursion Theorems

§1. The Weak Recursion Theorem. We now prove state-
ment (8) above—this is the weak recursion theorem—and we will see
that all the other statements are derivable as corollaries.

Theorem 1—The Weak Recursion Theorem. For any r.e. re-
lation R(x,y), there is a number n such that un = x : R(x,n).

Proof. The relation Ry(x,y) (as a relation between x and y) is r.e.,
so by the iteration theorem, there is a recursive function d(y) such
that for all x and y,

Now take any r.e. relation R(x,y). Then the relation R(x,d(y))
is also r.e.; let m be an index of this relation. Then for all a;,

Thus x £ ^d(m) «-*• R(x,d(m)). And so for all x, x 6 u>n <-+ 72(x,n),
where n is the number d(m).

The above proof revealed more than the statement of the theorem.
It will be useful to record this additional information in the following
sharper form of Theorem 1.

Theorem l". There is a recursive function d(y) such that for any
r.e. relation R(x,y), if m is any index of the relation R(x,d(y}),
then u>d(m) = x : R(x,d(m)).

Theorem 1 has the following corollary.
Theorem 1.1 — Another form of the weak recursion

theorem. For any recursive function f ( x ) , there is a number n
such that
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Proof. Let R(x,y) be the r.e. relation x € ^}(y)- By Theorem 1 there
is a number n such that wn = x : R(x,n). Hence,

Exercise 1. Prove the other seven "believe-it-or-not's".

Exercise 2.

1. Without using Theorem 1, prove that for any r.e. relation
R(XI ,..., xn, y), there is a number h such that for all x\,..., xn,

2. Derive (a) as a corollary of Theorem 1 by using the function
"n\^l» • • • 5 %n)-

Exercise 3. Prove the following more general form of Theorem 1.1:
For any positive n and any recursive function /(a;), there is a number
i such that Rf = Rn

f(f>.

§2. Unsolvable Problems and Rice's Theorem. The
"believe-it-or-not's" mentioned in the last section may seem like
somewhat frivolous applications of the recursion theorem. We now
turn to a far more serious application.

Let us call a property P(n) solvable if the set of all n having
the property P is recursive. For example, suppose that P(n) is the
property that wn is a finite set. To ask whether this property is
solvable is to ask whether the set of all indices of all finite r.e. sets
is recursive.

Here are some typical properties P(n) that have come up in the
literature.

(1) un is infinite.
(2) (jjn is empty.
(3) un is recursive.
(4) wn contains the number 5.
(5) un = WIT.
(6) The relation Rn(x,y) is single-valued (i.e., for all x, there is at

most one y such that Rn(x,y)}.
(7) The relaton Rn(x,y) is functional (for all x, there is exactly one

y such that Rn(x,y)).
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(8) All numbers are in the domain of Rn(x,y).
(9) Infnitely many numbers are in the range of Rn(x,y}.

For each of these nine properties, we can ask whether it is solv-
able; these are typical questions in recursion theory that have been
answered by different workers in the field and by individual meth-
ods. Rice's theorem, to which we are about to turn, answers a host
of such questions in one fell swoop.

Call a number set A extensional if A contains, with any index of
an r.e. set, all other indices of it as well. Thus, A is extensional iff
for every i and j, if u;t- = u>j, then i € A <-»• j G A. The set N of
all natural numbers is obviously extensional and the empty set 0 is
vacuously extensional; both these sets are recursive. Are there any
other recursive extensional sets?

Theorem R—Rice's Theorem. The only recursive extensional
sets are N and 0.

Lemma. For any recursive set A other than N or 0 there is a re-
cursive function f ( x ) such that for all x, x 6 A <-* /(a;) ^ A.

Proof of Lemma. Suppose that A is recursive and that at least
one number a is in A, and at least one number b is not in A. Define
/(#) as follows:

1. f ( x ) = b, if x e A,
2. /(a;) = a, if x (£ A.

If x € A, then f ( x ) = 6; hence f ( x ) $ A. If x £ A, then f ( x ) = a;
hence /(x) € A. So x £ A «-»• f ( x ) £ A. The relation f ( x ) = y is
r.e., for it can be written as

(it is r.e. since A and A are both r.e. sets). Therefore, f(x) is recur-
sive.

Proof of Rice's Theorem. Let A be any recursive set other than
N or 0. By the above lemma, there is a recursive function /(#) such
that for all a;, x € A «-* f ( x ) ^ A.

By Theorem 1.1, there is some number n such that un = Uf<n\.
Also n 6 A <-> f ( n ) ^ A, so the numbers n and f ( n ) are indices
of the same r.e. set, yet one of them is in A and the other is not.
Therefore, A is not extensional.
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Applications. Let us consider the first of the nine properties men-
tioned above—u>n is infinite. Obviously if a;,- is infinite and u>j = w,-,
then ujj is infinite, so the set of indices of infinite sets is extensional.
Also there is at least one i such that u>i is infinite and at least one
i such that w,- is not infinite. Therefore, the set of indices of all in-
finite sets satisfies the hypothesis of Rice's theorem and, hence, it
is not recursive. The same argument applies to all the other eight
properties; hence none of them are solvable!

The whole point is that if C is any non-empty class of r.e. sets
which does not contain all r.e. sets, then the set of all indices of all
members of C is not a recursive set.

Exercise 4. Consider the set of all ordered pairs (t,j) such that
U{ — Uj. Is this relation recursive?

Exercise 5. Consider the set of all ordered pairs (i,j) such that j
is in the range of the relation Ri(x,y). Is this relation recursive?

//. The Strong Recursion Theorem

§3. Strong Recursion Theorem. By Theorem 1, for any i
there exists some j such that MJ = x : Ri(x,j). Given the number
i, can we find j as a recursive function of i? That is, is there a
recursive function <?i>(a;) such that for any t, w^(,-j = x : J?t-(a;,<^(i))?
An affirmative answer (Myhill's fixed point theorem) is a special case
of the following theorem.

Theorem 2—The Strong Recursion Theorem. For any r.e. re-
lation M(x,y,z), there is a recursive function <j>(y} such that for all
i, W0(,-) = x :M(x,i,<j>(i)).

We will give two proofs of this important theorem. The first is
along traditional lines; the second is quite different and will be a
model of subsequent proofs of other recursion theorems.

Proof 1. We take a recursive function d(y) satisfying Theorem l".
Now, given an r.e. relation M(x,y,z), the relation M(x,z,d(y)) (as
a relation among x, y and z) is r.e. [In A-notation, we are considering
the relation \x, y,z : M(x,z,d(y)).] By the iteration theorem, there
is a recursive function t(z) such that for all i, the number t(i) is an
index of the relation Af(a;,i,d(j/)) (i.e. for all x and y, Ri(x^y) <-»•
M(x,i,d(y).) Then by Theorem l" (taking t(i) for m), ^>d(t(i)) = x '•
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M(x,i,d(t(i))). And so we take (f>(y) to be the function d(t(y)).

Remark. The above proof required two applications of the iteration
theorem—one to obtain the recursive function d(y) of Theorem 1B

and the other to obtain the function t(y). Our second proof below
requires only one application of the iteration theorem. Before turning
to this proof, we would like to point out that Theorem 2 can be
alternatively derived from Exercise 18, Chapter 3 (whose solution,
also involving two applications of the iteration theorem, has been
given). By this exercise, there is a recursive function F(x,y) such
that for any r.e. relation M(a;, y, z), there is a recursive function t(y)
such that for all y and z,

Now take any r.e. relation M(x,y,z). The relation M(x,y,F(z,z))
is r.e., so there is a recursive function t(y) such that for all y and z,

Then

and so we take 4>(y) to be F(t(y),t(y)).

This is really Proof 1, but the steps are presented in a differ-
ent order; we, so to speak, diagonalized "at the last minute". The
functions F(y,y) and d(y) are actually the same. Also, this proof
really used two applications of the iteration theorem (since two were
necessary to prove the existence of a master function).

Our next proof of Theorem 2 is more than just "another proof".
It uses a device which will be necessary for the proof of Theorem E
of the next section. Here is our second proof.

Proof 2. In this proof we use the iteration theorem only once and
we get a different "fixed point" function (f>(y} from the one obtained
in the first proof.

The relation Rz(x,y,z), as a relation among x, y and 2, is r.e.,
so by the iteration theorem there is a recursive function t(y, z) such
that for all y and z,

(1) Ut(y,z) = ^ :Rz(x,y,z}.

Now take any r.e. relation M(x, y, z). The relation M(x, y, t(y, z))
is r.e.; let h be an index. Then for all x, y and z,
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and so

By (1), ut(yth) = x : Rh(x,y,h) = x : M(x,y,t(y,h)). So

We, therefore, take <t>(y) to be the recursive function t(y,h).

Our second proof reveals a fact which we would like to record on
its own right.

Theorem 2". There is a recursive function t ( y , z ) such that for any
r.e. relation M(x,y,z), we have for all y,

where h is any index of the relation M(x,y,t(y,z)).

Discussion. Recursion theorems are sometimes referred to as fixed
point theorems. One usually thinks of fixed points with reference to
functions; a fixed point of a function f ( x ) is an element n such that
/(re) = n. However, we can generalize the notion of a fixed point as
follows: Call n a fixed point of a relation R(x,y) if R(n,n) holds.
[Thus n is a fixed point of a function /(a;) iff n is a fixed point of
the relation /(#) = y-] Now suppose R is an r.e. relation. Define
R*(m,n) to hold if uim = x : R(x,n). What Theorem 1 tells us is
that for any r.e. relation R(x, y), there is a fixed point for the relation
R*(x,y). As such, Theorem 1 can be looked at as a relational fixed
point theorem.

Now consider a 3-place relation R(x,y,z). Call a function <f>(x) a
fixed point function for R if for all i, R(i, <j>(i),<j>(i)) holds. For any r.e.
relation M(x, y, z), define M*(i, m, ra) to hold if un — x : M(x, i, m).
Theorem 2 tells us that for any r.e. relation M(x,y,z), not only is
it the case that for every i there is a fixed point for the relation
M*(z',a:,?/), but also there is a recursive function </>(y) such that for
all i, M*(i, <j)(i), </>(i)) holds—in other words, there is a recursive fixed
point function for the relation M*(x,y,z).

We called Theorem 1 weak because it asserts merely the existence
of fixed points. We called Theorem 2 strong because it asserts the
existence of recursive fixed point functions (at least one for each r.e.
relation M(x,y,z)).

Theorem 2 has the following corollaries:
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Theorem 2.1. For any r.e. relation M(x,y,z) and any recursive
function g(x), there is a recursive function <f>(y) such that for all y,

Proof. By applying Theorem 2 to the r.e. relation M(x,y,g(z)).

Theorem 2.2—Myhill's Fixed Point Theorem. There is a re-
cursive function </>(y) such that for all y, uv<y) = x : Ry(x,<p(y^.

Proof. By applying Theorem 2 to the r.e. relation Ry(x,z) (as a
relation among x,y and z).

Theorem 2.3. For any recursive function g(x), there is a recursive
function <J>(y) such that for all y,

Proof. By applying Theorem 2 to the relation Ry(x,g(z}).

Remarks. In Chapter 4 we gave two different proofs that Post's
complete set K is generative. We find it of interest that this can
also be proved as a corollary of the strong recursion theorem. Let
M(x,y,z) be the r.e. relation J(z,x) G Wj,. Then by Theorem 2,
there is a recursive function <f(y) such that for all x,

Hence y <E uv(y) <-> J(<f(y),y) € uy. But note J(<p(y),y) e K <-»
y £ w^), and so J(<p(y),y) € K <-> J(<p(y),y) € uv. Thus J(<f>(y),y)
is another generative function for K.

Theorem 2 has the following generalization (which can be derived
as a corollary of Theorem 2 or can be proved in an analogous man-
ner).

Theorem 2'. For any r.e. relation M(XI, ..., xn, yi,..., yk,z) there
is a recursive function <f>(yi,..., yk) such that for all x\,..., xn and
yi,---,yk,

Proof. See Exercises 6, 7 and 8 below.

Exercise 6. Prove Theorem 2' along the following lines: Given
n > 0, there is a recursive function d(z) such that for all x\ . . . ,xn,
Rd(z)(xi,--">Bn) ++ Rz(xi,...txn,z). Then, given
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take a recursive function <(yi,. . • , yk) such that for all zi,£n, j/i,r/fc
and z,

Take (^(2/1,..., j/n) to be eft(t/i, . . . ,t/n) and show that the function <j>
works.

Exercise 7. Alternatively, take a recursive function H(yi, . . . , yk, z)
such that for all x\ , . . . , xn , y\ , . . . , yk and 2,

Let h be an index of the relation

and show that the function H(yi, • • -yki h} works.

Exercise 8. Alternatively, given an r.e. relation

show there is an r.e. relation R(x,y,z) such that for all an,. . . ,a;n ,
yi,...,yk and 2,

Applying Theorem 2 to the relation R(x,y,z) there is a recursive
function ip(y) such that for all y and c*ty(j,) = a;, R(x,y,(f)(y)). Take
4>(yi, • • . , yk) to be i/>J(yi, . . . , |/fc) an(i show that this function works.

Exercise 9. Using Theorem 2, prove that for any r.e. relation R(x, y)
and any r.e. set A, there is a recursive function <f>(y) such that

1. For all i in A, w0(,-j = a; : R(x,<fi(i)).
2. For all i g A, u^ = 0.

Exercise 10—Myhill. Using the exercise above, show that for any
recursive function f(x) and any r.e. set A, there is a recursive func-
tion <j>(y) such that for any y,

l . I f y € A , then u^y) = {/(#»))>•
l.liyi A, then w^y) = 0.
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Exercise 11. Prove that for any recursive function g ( y ) , there is a
recursive function h(y) such that for all t/, ^h(y) — ̂ y n {d(h(y))}-

Exercise 12. Show that for any recursive function G(x,y), there is
a recursive function <f>(x) such that for all x, ^o(x,<t>(x)) — U4>(x)-

III. An Extended Recursion Theorem

§4. We recently thought of an extension of Theorem 2 (Theorem E
below) that bears an interesting relation to the double recursion the-
orems to be considered in the next chapter. It might superficially
appear that this theorem can be obtained as a corollary of Theo-
rem 2, but if it can, we do not see how.

We first consider a question. Given an r.e. relation M(x,y, z) and
a recursive function g(x), we know by Theorem 2.1 that there is a re-
cursive function </>(y) such that ^^,(y) = x : M(x,y,g(cj)(y))). Is there
necessarily a function <j>(y} such that ^(y) = x : M(x,j/,<^>(p(t/)))?
We see no way to prove this using Theorem 2, but we can prove it
by a simple modification of our second proof of Theorem 2. More
generally, we will prove:

Theorem E—The Extended Recursion Theorem. For any
r.e. relation M(x,y,zi,... ,zn) and any n-tuple of recursive func-
tions gi(y),.. .,gn(y), there is a recursive function <j>(y} such that
for ally and z\,... ,zn,

Proof. As with the second proof of Theorem 2, we take a recursive
function t(y,z) such that Ut(y,z) — x '• Rz(x,y,z). We take an in-
dex h of the r.e. relation M(x,y, t(gi(y),z),... ,t(gn(y),z)) and so
"t(y,h) = ^ '• M(x,y,t(gl(y),h),...,t(gn(y),h)). And so we take
<Ky) = t(y,h).

We note that Theorem 2 is the special case of Theorem E for n = 1
and gi(y) = y. For n = 2 and gi(y~) the identity function, we have

Corollary. For any r.e. relation M(x,y,z^,z<£) and any recursive
function g ( y ) , there is a recursive function <j)(y) such that for all y,
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Discussion. Our proof of Theorem E is hardly different from our
second proof of Theorem 2. Concerning our two different proofs of
Theorem 2, our first proof utilized the fact that composition of re-
cursive functions is recursive, which our second proof did not! On
the other hand, our second proof utilized the fact that for any recur-
sive function f ( x , y ) and any number n, the function /(a;,ra) (as a
function of a;) is recursive, whereas our first proof did not. In a more
abstract setting, these two proofs give rise to distinct theorems (a
topic which we will pursue in a companion volume Diagonalization
and Self-Reference).



Chapter IX

Symmetric and Double Recursion Theorems

/. Double Recursion Theorems

We have proved that every completely E.I. pair of r.e. sets is D.U. In
the next chapter we will show the stronger result that every E.I. pair
of r.e. sets is D.U. The proof of this is based on the double recursion
theorem of this chapter.

Our original formulation of the double recursion theorem (T.F.S.)
required the recursive pairing function J(:c,7/), not only for its proof,
but for its very statement. In this chapter, we give an improved ver-
sion whose statement and proof are independent of J, K and L.1 In
Part III of this chapter, we compare our new version with the original
J, K and L version and show that they are easily inter derivable.

§1. The Weak Double Recursion Theorem. Consider
two r.e. relations, MI(X,y, z) and M%(x, y, z). For any number 6, the
relation Mi(x,y,b) is an r.e. relation between x and y, and so by the
weak recursion theorem (Theorem 1, Chapter 8), there is a number
a such that ua = x : Mi(x,a,b). Likewise, for any number a, the
relation M2(x,a,y) is an r.e. relation between x and y, and so there
is a number b such that wj, = a; : M2(a;,a,6). Our next theorem tells
us that we can choose a and 6 so that both these conditions hold
simult aneously.

Theorem 1—The Weak Double Recursion Theorem. For
any r.e. relations Mi(x,y,z) and M<i(x,y,z), there are numbers a

1 In applications to the theory of double productivity and effective inseparability, the
use of recursive pairing functions is actually a quite unnecessary detour.
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and b such that

(1) w0 = x :Mi(»,a,6),
(2) wj, = x : M2(x,a,b).

In preparation for the strong double recursion theorem of the next
section, we will state and prove Theorem 1 in the following sharper
form.

Theorem l". There is a recursive function t(y,z) such that for any
r.e. relations Mi(x,y,z) and M^(x,y,z), if c is any index of the
relation Mi(x,t(y,z), t(z,y)) and d is any index of the relation
M2(x,t(z,y),t(y,z)), then,

(1) ^t(c,d) - ^ '• Mi(x,t(c,d),t(d,c)),
(2) wt(d>c) = x : M2(ar,<(c,<f),*(</,c)).

Proof. By the iteration theorem, there is a recursive function i(j/, z)
such that for all y and z, Wt(y,z) ~ x '• Ry(xill,z)-

Now take any two r.e. relations Mi(x,y, z) and M-2(x,y,z). Let c
be an index of the r.e. relation Mi(x,t(y, z),t(z, y)) and let d be an
index of the relation M-2(x,t(z,y),t(y,z)). Then

1- ^t(c,d) - x '• Rc(x,c,d) = x : Afi(a;,f(c,rf),i(d,c)),
2- ut(d,c) = x '• Rd(x,d,c) = x : Af2OM(c,rf),*(rf,c)).

Of course, Theorem 1 follows from Theorem l" by taking

As a corollary of Theorem 1, we have

Theorem 1.1. For any two r.e. relations R^(x,y) and R2(x,y) and
any recursive function g(x, y), there, are numbers a and b such that

(1) a>a = x : Ri(x,g(a,b)).
(2) ub - x : R2(x,g(a,b).

Proof. By applying Theorem 1 to the r.e. relations Ri(x,g(y, z ) ) and
RMy,z))-

As another corollary we have

Theorem 1.2 — A weak Double Myhill Theorem. For any re-
cursive functions gi(x,y),gz(x,y) there are numbers a and b such
that,
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Proof. Exercise.

§2. The Strong Double Recursion Theorem. We next
show that in Theorem 1 the numbers a and 6 can be found as recur-
sive functions of the indices i and j of the relations M\(x,y,z) and
Mi(x,y,z) (Theorem 2.2 below). This will be seen to be a conse-
quence of the following more general theorem.

Theorem 2 — The Strong Double Recursion Theorem. For
any r.e. relations M\(x,y\,yi,z\,z<i) and M2(x, 2/i,2/2,2i,z2)> there
are recursive functions 21(3/1,3/2) and 22(2/i,2/2) such that for all y\
and 3/2,

(!) wMi/i.ss) = x '• Mi(x^yi,y2,ti(yi,2/2),h(yi,y-i)},
(2) ^t2(yi,y2) = x : M2(x,yi,y2,ti(yi,y2),t2(yi,y2)).

Proof. We take a recursive function t(y,z) satisfying Theorem l".
Now consider any r.e. relations

By the iteration theorem, there are recursive functions </>i(2/i, 2/2) and
02(yi> 2/2) such that for any numbers i and jf, (j>i(i,j) is an index of the
r.e. relation M\(x,i,j, t(y,z),t(z,y)) (as a relation between x, y and
z) and $2(1, j) is an index of the relation Af2(x,i,j,<(z,y),i(7/,0)).
Then by Theorem l" we have (1) and (2) above, taking t\(yi, y2) to be
t(<t>i(yi,2/a), ^2(2/1,^2)) and tz(j/i,!/2) to be *(<£2(2/i,l/2),<£i(2/i,l/2))-

Remark. The proof above used three applications of the iteration
theorem; one to obtain the function t(y,z) of Theorem l" and the
other two to obtain the functions 0i(2/1,1/2) and ^2(2/1? 2/2)- We will
later give an alternative proof which requires only one application of
the iteration theorem.

Theorem 2.1. For any r.e. relations

there are recursive functions *i (2/1,2/2) and ti(2/1,2/2) such that for all
V\ and 2/2,

(!) wti(yi,j/2) = x '• MiO«Mft»*i(tfi»lto),*2(lft,lfe)),
(2) wta(itt,») = * : Af2(z,»2,<i(lft . ,K !),*2(»l»»2)).

Proof. Given the r.e. relations M\(x,y,z\,z-i) and M2(a;,3/,zi,z2),
define two new relations by: M{(a;,2/i,2/2,2i,z2) iff Mi(at, j/!,^i,^2)
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and M%(x, 2/1,3/2, 21,22) iff My>(x,yi,z\,zz). Then apply Theorem 2
to the relations M[ and M%.

Theorem 2.2 — A Double Analogue of Myhill's Fixed-Point
Theorem. There are recursive functions ^1(2/1, 2/2) and ^2(2/1? 2/2)
such that for all y\ and 2/2,

(!) wti(i/i,i/a) = * •' #ittOMi(»iittj)»*2(»i,!fe)),
(2) w*3(i«,») = * : Ry2(

x^i(yi,ife),*2(yi,2/2))-
Proof. By Theorem 2.1, taking Mi(x,y,zi,z^) and M^x^y, z\,z-i) to
both be the r.e. relation .Ry(a:,21,22)-

Theorem 2.3. For r.e. relations Mi(x,y,zi,z2) andMi(x,y,zi,z2)
there are recursive functions </>i(y) and <fo(j/) such that for all y,

C1) W0i(z/) = x '• M i ( x , y , f a ( y ) , f a ( y ) ' ) .
(2) W02(a) = x : M2(x,y,<fa.(y),fa(y))-

Proof. By Theorem 2.1, taking ^(y) = ti(y,y) and ^(y) = t2(y,y)

Theorem 2.4. For any two r.e. relations Mi(x,y,z) and M%(x,y, z)
and any recursive function g(x,y), there are recursive functions <j>\ (y)
and <f>2(y) such that for all y,

C1) ^My) = x '• Afi(a;>2/>flr(<M2/)><M2/))),
(2) ^My) = x '• M2(xiy,9(<t>i(y^fa(y)))-

Proof. By Theorem 2.3 applied to the r.e. relations Mi(x,y,g(z-L,zi))
and M2(x,y,g(zi,z2')).

Theorem 2.5. For r.e. relations M\(x,y,z) and M<z(x,y,z) and re-
cursive function g(x,y), there are recursive functions 11(2/1,2/2) ond
t%(yi,2/3) such that for all y\ and y^,

C1) wii(s/i,J/2) = x : Ml(x' I f t t » f l (< l (W»W)»*2( f f l i I f t l ) ) ) ,
(2) "tadft.sa) = « : M2(x,y2,g(ti(yl,y^),t'Z(y1,y2))).

Proof. By applying 2.1 to the r.e. relations

From Theorem 2.5 (taking both Mi(x,y, z) and M%(x,y,z) to be
the relation Ry(x,z}), we have,

Theorem 2.6. For recursive function g(x,y), there are recursive
functions t\ (2/1,2/2) andt2(yi,y?) such that,
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(1) wtl(j,1)J/2) = x : Ry1(x,g(tl(yl,y2),t2(yi,y2)),
(2) w*a(vi,») = * '• fl»0*»0(*i(»iiife)>*3(tfi,ife)).

Exercise 1. Why is the weak double recursion theorem an immedi-
ate corollary of the strong double recursion theorem?

Exercise 2. Prove the following (weak) "triple" recursion theorem:
For r.e. relations Mi(x,y, z, w), M2(x,y,z, w) and M3(a;,j/, z, w),
there are numbers a, b and c such that,

1. ua = x : Mi(a;,a,6,c),
2. u>b = a; : M%(x,a, 6,c),
3. wc = a; : Ma(a;,a,6,c).

//. A Symmetric Recursion Theorem

§3. We recently hit on the following theorem whose proof makes
use of only one application of the iteration theorem and which yields
the strong double recursion theorem as a corollary.

Theorem S — The Symmetric Recursion Theorem. For r.e.
relation M(x,z,yi,y2,wi,W2), there is a corresponding recursive
function t(z\,zi,y\,y-i) (which we might call a symmetric function
for M) such that for all z\,z-i, y\ and yi,

Proof. By the iteration theorem, there is a recursive function

Now let h be an index of the r.e. relation

Applying Theorem S to the r.e. relation Rz(x,yi,y2,wi,W2), we
get

such that for all 2i,2252/i>3/2 and w,

Then take
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Theorem SM— A Symmetric Form of Myhill's Fixed-Point
Theorem. There is a recursive function S(z\, z2,yi, 2/2) such that,

Such a function S(zi,Z2,yi, 2/2) we will call a symmetric Myhill
function. The existence of such a function immediately yields the
following variant of Theorem 2.

Theorem 2°. For any two r.e. relations M\ and MI of five argu-
ments, there are recursive functions £1(3/1,2/2) and t^(yi, 2/2) such
that,

Proof. Let a\ and a2 be respective indices of MI and M2. Then take

where 5 is a symmetric Myhill function.

Of course, Theorem 2 is easily obtainable from Theorem 2°: Given
i.e. relations Mi(x,yi,y2,wi,wz) and M2(x,yl,y2,u>i,u>2), apply
Theorem 2° to the relations MI and M% , where

is the relation M2(x,y1,y2,w2,wi).
Another theorem that yields Theorem 2 more directly (it avoids

having to go via Theorem 2°) is Theorem N of §8. The reader can
turn to this directly, if desired.

///. Double Recursion with a Pairing Function

Our original formulation (1961) of the double recursion theorem was
in terms of the recursive pairing function J(x,y) and its inverse
functions Kx and Lx. Here is the original version.

Theorem D. For any two r.e. relations M\(x,y,z) and MI(X, y, z),
there is a recursive function <j>(y) such that for all y,

(1) VK<j,y = x : Mi(x,y,<l>(y}),

and
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(2) uL4,y = x : M2(x,y,<t>(y)).

We will give an improved version of our original proof of Theo-
rem D which brings to light an interesting feature in its own right
(Theorem 3 below).

§4. Double Master Functions. By a double master func-
tion, we shall mean a recursive function G(y,z) such that for any
r.e. relations Mi(a;, y, z) and M%(x, y, z) there is a recursive function
t(y] such that for all y and z, the following two conditions hold:

(1) uKG(tv,z) = x : Mi(x,y,z),
(2) ^LG(ty,z) = * : M2(x,y,z).

Theorem 3. There exists a double master function.

Proof. By Theorem 2.1, Ch. 3, there exists a master function F(x, y).
We let G(y, z) be the recursive function J(F(Ky, z), F(Ly, z}). Then
KG(y,z) = F(Ky,z) and LG(y,z) = F(Ly,z). We show that
G(y, z] is a double master function.

Consider any two r.e. relations Mi(x,y,z) and M%(x,y,z). Since
F(y,z) is a master function, there are recursive functions ii(j/) and
t2(y) such that x : Mi(x,y,z) = ^F(tiy,z) and x : M^(x,y,z) =
^F(t2y,z)- We let t(y) = J(ti(y),h(y)), and so we have t^y = Kty
and t%y = Lty. Therefore,

(1) X : Mi(x,y,z) = Up(Kty,z) = ^KG(ty,z)^

(2) x : Mi(x,y,z) = uF(Lty,z) = "LG(ty,z)-

This concludes the proof.
Now that we have a double master function G(y,z), the proof

of Theorem D is easy. Given two r.e. relations Mi(x,y, z) and
M2(a;,2/,z), the relations Mi(x,y,G(z,z)) and M^(x,y, G(z,z)) are
r.e.; hence there is a recursive function t(y) such that,

(1) UKG(ty,z) = x '• Mi(x,y,G(z,z)),
(2) ULG(ty,z) = x : Mt(x,y,G(z,z).

In (1) and (2), we replace z by t(y) and we have,

(1)' VKG(ty,ty) = x '• Mi(x,y,G(ty,ty)).
(2)' WLG(t»,t») = x '• M2(x,y,G(ty,ty)).

And so we take </>(y) = G(t(y),t(y)).
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Exercise 3. The above proof sort of "doubled up" on our first proof
of the (strong) recursion theorem (Theorem 2 of Ch. 8). We can also
"double up" on the second proof of that theorem and obtain The-
orem D in the following manner: Take recursive functions t^(y,z)
and t2(y,z) such that wtl(y,z) = x '• RKz(x,y,z) and vt2(y,z) =
x : RLz(x,y,z}. Then take t(y,z) = J(ti(y,z),t2(y,z)). Let hj.
and hi be respective indices of the relations Mi(x,y,t(y,z)) and
M2(x,y,t(y,z)) and let h = J(hi,h2). Now take </>(?/) to be t(y,h)
a n d show that t h e function < / works.

§5. Theorem D and Theorem 2 Compared. From The-
orem D, we can obtain an alternative proof of the strong double
recursion theorem (Theorem 2). Given two r.e. relations

apply Theorem D to the two relations

(as relations among x, y and 2) to get a recursive function 4>(y} such
that for all y,

(1) uK</,y = x : Mi(x,Ky,Ly,K<j>y,L(f>y),
(2) uL<t,y = x : M2(x,Ky,Ly,K<j>y,L(f>y).

Then take #1(2/1,^2) to be K<f>J(yi,y2), and also take t2(yi,y2) to be
L<j)J(yi ,2/2)- The reader can easily verify that the functions t\ (yi , 3/2)
and t2(yi,y2) work.

It is also possible to proceed in the reverse direction and derive
Theorem D as a corollary of Theorem 2. Here is the method.

Theorem 2 has Theorem 2.4 as a corollary, so we will derive Theo-
rem D from Theorem 2.4 directly. We take g(x,y) to be J(x,y) and
so there are recursive functions ^i(y) and <j>2(y) such that for all y,

(!) w^i(3/) = * : Mi(x,y,J(<fa.(y),fa(y))),
(2) w*2(!/) = * : M2(«,2/,^(<^i(2/),^2(2/)))-

We take ^>(t/) to be «/(<£i(s/),<fo(2/))) and so ^i(y) — -^<^2/ an<i
<j!)2(j/) = i<^2/, and we have,

(1)' wjr^j, = a; : Mi(x,2/,<^(t/)),
(2)' WL^J, = a; : M2(x,y,<j>(y)).
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Exercise 4. Using the double recursion theorem, prove that for any
two r.e. sets A\ and A-z and any two r.e. relations Ri(x,y) and
R2(x,y) and any recursive function g(x,y), there are recursive func-
tions <f>i(y) and <j>i(y) such that for all y,

1. y € A! =» Ufa(y) = a; : Ri(x,g((t>i(y),<f>2(y))),
2. y<£Ai -*-Wfc(w) = 0,
3. j/ € A2 ̂  w^(,,) = ar : R<i(x,g(^(y)^i(y))},
4. y £ A2 => w^(y) = 0.

Exercise 5. Show that for any r.e. sets a, /3, A and B, and any
recursive function g(x,y), there are recursive functions (j)\(y] and
<^2(y) such that for all j/,

1. y € 5 => w^(tf) = a U {flf(^i(2/),^2(y))},
2. y $ B => w0l(y) = a,
3. y € A => W0a(y) = /? U Wi(y),6»(lO)},
4. y ^ A =>• wfc(tf) = /?.

Exercise 6. Show that for any recursive function g(x,y), there are
recursive functions £1(2/1,3/2) and h(yi,2/2) such that for all 1/1 and
2/2,

L w*i(»i,») =w2/i n{ff(*i(2/i'2/2),*2(2/i,J/2))},
2- w*2(2/i,»2) =

 wJ/2 n {^(<i(»i,Ift!),t2(tfi,»ii))}.

7F. Further Topics

§6. Applications of the Extended Recursion Theorem.
It is possible to derive the strong double recursion theorem from the
strong recursion theorem (two applications are required—cf. §7 of
this chapter). We do not know, however, whether the symmetric
recursion theorem (which appears to be stronger than the strong
double recursion theorem) can be derived as a corollary of the strong
recursion theorem. But it can be derived from the extended recursion
theorem of the last chapter, as we will now see. Along the way
we will derive a variant of Theorem S which bears much the same
relationship to Theorem S as Theorem 2 bears to Theorem D.

The Bar Symmetric Recursion Theorem. For any number
x, we define af to be J(Lx,Kx). Thus for any numbers Xi and a;2,
we have J(x\,xi} = J(xz,xi). Obviously W = x and K~x = Lx and
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Lx = Kx.

Theorem B — The Bar Symmetric Recursion Theorem.
For any r.e. relation M(x,z, y^wi^w^}, there is a recursive function
t/>(,z,t/) such that for all z and y,

Of course the function g is recursive.
Now, given an r.e. relation M(x,z,y,w\,W2), let M\(x,y,zi,z2)

be the r.e. relation M(x,Ky,Ly,Zi,Z2). Applying the corollary of
Theorem E (last chapter) to MI, we have a recursive function <j>(w)
such that,

We take J(z, y) for w and we have,

And so we take ^(z^) = <pj(z,y).

From Theorem B we can obtain an alternative proof of Theo-
rem S as follows: Given an r.e. relation M(a;,^, j/i, 3/2?^i? ^2)5 we
let Mi(x,z,y,wi,wi) be the r.e. relation M(x,Kz,Ky,Ly,w\,w-i).
Thus M1(x,J(zi,Z2),J(yi,y2}iU>i,W2) is equivalent to

We then apply Theorem B to the relation MI and get a recursive
function ii(z,y) such that oty(Z)j,) = x : M-i(x,z,y,il>(z,y),il>(z,y)).
We then take i(^i,z2, 1/1,2/2) = ^(J(zii Zi),J(yii 2/2)), and the reader
can easily verify that this function / works (the crucial point being
that

since

Remarks. We got from the extended recursion theorem to the sym-
metric recursion theorem via Theorem B. One can get directly from
Theorem E to Theorem S as follows: We take the recursive "quadru-
pling" function J^(x\^xi^x^^x^) (cf. §5, Chapter 3) and its- inverse

Proof. Define g(x) — J(Kx,Lx). Then for any y and 2,
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functions K*,..., K\—which we will now write a\,..., a^. We let
g(x} = 74(020;, <TI a:, <73£,<74a;) and, thus, for any numbers & i , . . . , X 4 ,

Then given an r.e. relation M(a;, 2,3/1, 3/2, MI, W2), we let the relation
MI (a;, 3/, w\,w-2) be the relation M(x, a\y, 033/5 cr^y, wi,w2) and apply
corollary of Theorem E to MI, thus getting a recursive function (f>(y)
such that ijJMy) = x : Mi(x,y,<fy,<f>gy). We then take

and the reader can verify that this function works.

§7. The (Strong) Single and Double Recursion Theo-
rems Compared. We have seen in the literature derivations of
the weak double recursion theorem from the strong (single) recur-
sion theorem (cf., e.g. Rogers [1967]). It is also possible to obtain the
strong double recursion theorem from the strong recursion theorem
as follows: We use the strong recursion theorem in the more general
form of Theorem 2', Ch. 8. We need two applications of it—one for
n = l , fc = 3, and one for n — l , fc = 2—i.e., we need the following
special cases.

(A) For any r.e. relation M(x, 2/1, 2/2, 2/3,z), there is a recursive func-
tion ^(2/1,2/2,2/3) such that for all 2/1,2/2 and t/3,

(B) For any r.e. relation M(x, y\, 2/2, 2), there is a recursive function
t(yi,yi} such that for all y\ and j/2,

Now to derive the strong double recursion theorem. Let

be two r.e. relations. Applying (A) to the relation M2, there is a
recursive function ^(3/1,3/2,3/3) such that for all 3/1,3/2 and 3/3,

(!) ^(yi.ttz.j/s) = x ' MZ(X>2>i>2/2,2/3,<X3/i,2/2,3/3))-

Next we apply (B) to the r.e. relation Mi(a;,7/i, 2/2,^,^(2/1,2/2^)) (as
a relation among x, 2/1,2/2 and z), and obtain a recursive function
*i (2/1,2/2) such that for all yi and j/2,
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(2) wtl(yiij,2) = x :Ml(x,yl,y2,tl(y1,y2),^(yi,y2,t1(y1,y2))).

Then, in (1), we substitute £1(2/1,2/2) for 3/3 and get,

(1)' w0(j,1)J/2itl(j,1)W)) = x : M2(x, ?/i,j/2, ti(yi, 2/2), <^(j/i, 2/2,^1(2/1, 2/2)))-

We, therefore, take ^2(2/1, 2/2) to be <A( 2/1,2/2,^1 (2/1, 2/2)) and we see
that the pair (*i (2/1,2/2), £2(2/1, 2/2)) works.

We admire the above proof for its ingenuity, but we find the di-
rect proof of the double recursion theorem, or the approach using
the symmetric recursion theorem, to be more straightforward and
intuitive. Better yet, we have Theorem N of the next section.

§8. A Very Nice Function. In deriving Theorem 2 from
the symmetric recursion theorem, we first had to prove Theorem 2°
and then make a "switch" . The following theorem yields Theorem 2
more elegantly.

Theorem N. There is a recursive function JV(z,Zi, ,22, 2/1,2/2) such
that for all z,zi,z2,yi and y2,

Proof. Take a recursive function g(z,z\,zi,y\,yi, w] such that

Let h be any index of the following relation:

Then take N(z,Zi,z-2,yi,y2) = g(z,zi,Z2,yi,y2,h).

Remark. We could have proved the more general fact (call it Th. NI)
that for any r.e. relation M(x,z,i/i, y<2,w\, ̂ 2), there is a recursive
function N(z,z-i,z2,yi^y2) such that,

Now, in Theorem N, if we take,

and
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we at once have,

Theorem 2* — A Uniform Version of Theorem 2. There are
recursive functions (f>i(zi,z-2,y i, y 2) and $i(z\, 22,2/1, 2/2) such that,

and

^02(21, *2,2/i ,3/2) = x : #*2(^i>^2,<M2i, 22,2/1,2/2), ̂ 2(2!, 22,2/1,2/2))-

Of course, Theorem 2 follows since, if ai and 02 are respective
indices of Mi(a:, 3/1,3/2, «>i, 103) and M2(z, 2/1,2/2,^1,^2), we can take,

Discussion. If in the statement and proof of Theorem N, we every-
where delete "yi" and "3/2", we get a recursive function N(Z,ZI,ZZ)
such that,

From this, one can obtain an alternative proof of the weak double
recursion theorem (in fact of Theorem 2.1, which is its uniform ver-
sion).

For readers familiar with combinatory logic, this argument is sim-
ilar to the author's proof of the double fixed point theorem in com-
binatory logic2 i.e., we take a combinator N such that,

§9. The n-fold Recursion Theorem. Let n be any positive
integer > 2. To reduce clutter, let us abbreviate uzi,...,zn

n by ~z
and "j/i, . . . , 2/n" by 2/ . Theorem N generalizes easily as follows:

Theorem N'. For each n > 2 there is a recursive function
N(z,zi,...,zn,yi,,..,yn') such that

From Theorem N', we easily get the following n-fold generalization
of Theorem 2.

2Smullyan [1985], Ex. 6, p. 196 and solution, p. 198

and
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Theorem 2'. For any r.e. relations Mi,...,Mn of 2n + 1 argu-
ments, there are recursive functions t\(y\, . . . , yn), . . . , tn(y\, . . . , yn)
such that for each i < n,

We leave the proofs of Theorem N' and Theorem 2' to the reader.
[Theorem N1 has its analogue in combinatory logic. For each n > 2,
there is a combinator n such that,

This provides a simple proof of the n-fold fixed point theorem which
moreover works for the A-I calculus.]

We remark that Theorem TV (and even Theorem N') is also ob-
tainable as a corollary of the extended recursion theorem. Indeed,
all the theorems of these last two chapters can be derived from the
extended recursion theorem without any further diagonalizations or
further use of the iteration theorem.

Exercise 7. How is Theorem N derivable from the extended recur-
sion theorem? [Note: The corollary of Theorem E is not strong
enough; we must use Theorem E for n = 2.]

Exercise 8. Prove Theorem N' and Theorem 2'.

§10. A General Fixed Point Principle. The following
theorem, despite its simplicity, yields just about all the results of
this chapter and the last.

Theorem G. For each natural number n there is a recursive func-
tion g(yi,. . . ,yn,z) with the following property: For any positive k
and any r.e. relation M ( X , X I , . . . , £jt) and any recursive functions
fi(yi,. ..,yn,z),..., f k ( y i , . • • , yn, z) there is a number h such that
for allyi,...,yn,

Proof. (Sketch). Take a recursive g such that

Then take h to be an index of
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Let us consider some applications of Theorem G.

(1) To get the weak recursion theorem, take n = 0, k = 1,
/i(2) = g(z) and n — g(h). Then u>n = x : M(x,n).

(2) For the strong recursion theorem, take n = l , fc = 2,
/i(y>2) = y,h(y,z) = 9(y,z) and 0(y) = g(y,h).

(3) For the symmetric recursion theorem, take

Exercise 9.

1. How is Theorem N derived from Theorem G?
2. Same with the extended recursion theorem.



Chapter X

Productivity and Double Productivity

Now we will give the promised applications of the (strong) recursion
and double recursion theorems to the theory of productivity and
effective inseparability (and also to double productivity—a double
analogue of productivity—which we will define).

/. Productivity and Double Productivity

§1. Weak Productivity. We recall that a set a is said to be
co-productive under a recursive function g(x) if for every number i,
such that u>i is disjoint from a, the number g(i) is outside both a
and (jjf. This, of course, implies the following weaker condition:

C\: For every i, such that w; is disjoint from a and such that u>{
contains at most one element, the number g(i) is outside both
a and a;,-.

Condition C\ implies the following still weaker condition:

€2'- For every i, (1) if cjt- = 0, then g(i) £ a; (2) if w,- = {#(«)}>tnen

g(i) e a.

To see that C\ implies Cj, suppose C\ holds. Then (1) of C*2 is
immediate. As for (2), suppose that o>» = {<?(&)}• If g(i) ^ a, then
a;,- is a unit set disjoint from a. Hence by Ci, 0(0 ^ wi> which means
that g ( i ) £ {g(i)}, which is absurd. Hence g(i) 6 a.

We will say that a is weakly co-productive under g(x) if g(x) is
recursive and condition Cj. holds. We wish to prove:

Theorem 1. If a is weakly co-productive, then a is generative.

120
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Lemma 1. For any recursive function g(y), there is a recursive
function t(y) such that for all y,

Proof. We use the (strong) recursion theorem. Given the recursive
function ff(j/), let M(x,y, z) be the r.e. relation x 6 u>y A x = g(z).
By the recursion theorem, there is a recursive function t(y) such that
for all y,

Proof of Theorem 1. Suppose a is weakly co-productive under
g(y). Take t(y) satisfying the above lemma. We show that gty
is a generative function for a.

I. Suppose gty € uy. Then uy n {gty} = {gty}. Also

(by Lemma.) Hence Ut(y) — {9ty}- Hence gty G a (since a is
weakly co-productive under g(y)).

2. Suppose gty £ uy. Then uy n {gty} = 0. Hence Ut(y) = 0
(since Ut(y) — uy H {<7<y})« Hence piy ^ a (again by weak
co-productivity) .

By 1 and 2, gty € uy *-*• gty £ a.

Corollary 1. If a is weakly co-productive, then a is universal.

Proof. By Theorem 1 above and Theorem 1 of Chapter 6.

Corollary 2—My hill's Theorem. If a is co-productive, then a is
universal.

Weak Co-productivity and Universality. One can go directly
from weak co-productivity to universality as follows.

Lemma 1.1. For any recursive function g(y) and any r.e. set A,
there is a recursive function t(y) such that for all i,

(1) i 6 A => ut(i) = {gti}.
(2) i g A => WtW - 0.

Proof. Apply the recursion theorem to the r.e. relation
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(this relation is i.e., since A is assumed r.e. and g is a recursive
function). Then there is a recursive function t(y) such that for all z,

If i € A, then <^t(i) is x : x = gt(i), which is {gti}. If i <£ A, then
i £ A A x = gti is false (regardless of x). Hence o>t(,-) = 0.

Now suppose that a is weakly co-productive under g(y) and A is
an r.e. set that we wish to reduce to a. We take t(y) as in Lemma 1.1.
We show that gty reduces A to a.

1. Suppose i 6 A. Then ut^ = {gti}. Hence gti 6 a.
2. Suppose i £ A. Then uty,-) = 0. Hence #ii $ a.

§2. Weak Double Productivity. Let us call a disjoint pair
(a,/3) doubly co-productive under a recursive function g(x,y) if for
all numbers i and j such that w,- and uij are disjoint from each other
and disjoint from a and /3 respectively, the number g(i,j) is outside
all four sets a,/3,u>,- and Wj. It is obvious that if («,/?) is doubly
generative under g(x,y), then (a,/?) is doubly co-productive under
g(x,y). In T.F.S., we proved the "double" analogue of Myhill's
theorem—namely that any doubly co-productive pair is D.U. We
actually proved a stronger result and we are about to prove a still
stronger result.

If («,/?) is doubly co-productive under g(x,y), then the following
weaker condition obviously holds,

D\: For any i and j such that a;,- and Uj are disjoint from each other
and from a and /3 respectively and such that u>i U Uj contains
at most one element, the number g(i,j) is outside all four sets
a,/3,<jJi and Uj.

Condition D\ implies the following condition:

Z?2: For every i and j,

(1) If ui = uj = 0, then g(i,j) <£a(J/3.
(2) If Ui = 0 and Uj = {g(i,j}}, then g(i,j) € /?.
(3) If w,- = {g(i,j)} and u>j = 0 then ff(z,j) € a.

We can see that D\ implies D% as follows: Suppose D\ holds. Then
(1) of Z?2 is obvious. As for (2), suppose a;,- = 0 and Wj = {g(i, j )



I. Productivity and Double Productivity 123

Then w» is, of course, disjoint from Uj and a. Suppose g(i,j) £ /?.
Then {g(i,j)} is disjoint from /3, which means that Uj is disjoint
from /?. Hence by DI, fif(i, j) £ u>; U Wj U a U /3, hence #(«,.?) $• Wj,
and g(i,j) ^ {<K*, .?')}» which is impossible. Therefore, if a;,- = 0 and
ijjj = {g(i,j}}, then g(i,j) € /3, which proves (2). The proof of (3) is
symmetric.

We call (a,/3) weakly doubly co-productive if a is disjoint from (3
and if condition Z>2 is satisfied.

Theorem 2. If (a, (3) is weakly doubly co-productive, then (a,/3) is
doubly generative.

We first need

Lemma 2. For any recursive function g(x,y), there are recursive
functions ii(j/i, 3/2) o,nd ^2(^15^2) swc^ ^Aof /or a// i and j,

I1) wtiW) = w«" n {S(*l(*»j)»*2(*,j))}»

(2) ^(,-j) - w,- n M*i(i, j),*2(t,j))}-

Proof of Lemma: Now we use the (strong) double recursion
theorem—or rather its corollary Theorem 2.1, Chapter 9.

Given a recursive function g(z,y), we let MI(x,j/, 21,^2) and
Mi(x,y,z\,z-i) both be the r.e. relation x € u>y A a; = 5(21,22)- Then
by Theorem 2.1, Chapter 9, there are recursive functions <i (#1,3/2)
and £2(3/1) #2) such that for all i and j,

1. ar € wtl(t-j) *•+• (x € w,- A x = flf(<i(*,j)»*2(*',j)))>
2. a; € ««,(,-,,•) <-* (a: € w, A ar = g(ti(ij),t2(i,j))).

Thus

FTOO/ o/ Theorem 2: Suppose (a,/?) is weakly doubly co-produc-
tive under g(x,y). Let t\(x,y} and t-^(x,y) be as in the above lemma.
We show that (a,/?) is D.G. under the function g(t\(x,y},ti(x,y)).
To show this, suppose i and j are such that u>i and u>j are disjoint.

1. Suppose g(ti(i,j),ti(i,j)) € w,-. Then

(by 1) and

fbv 2V
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Then by the lemma,

Also g(ti(i,j},t2(i,j}) £ Uj (since Wj is disjoint from a;,-) and so

Hence by the lemma, Uta(i,j) = 9. It then follows from (3) of
condition D% that

2. By a symmetric argument, if g(ti(i,j),tz(i,j)) € u>j, then

3. Suppose 5(<i(t,j'),/2(*5j)) ^ w« u wr Then

and so by the lemma, Wti(i,j) = ^(M) = $• Hence, we conclude
that g(t\(i, j),tz(i, j)) ^ a ̂  /3, by (1) of condition I^-

Since w^ is disjoint from u>j and a is disjoint from 0, it follows
from 1.-3. by using prepositional logic that

and

Corollary. If(a,/3) is doubly co-productive—or even weakly doubly
co-productive—then (a,/3) is D.U.

Proof. By Theorem 2 above and Theorem 2 of Chapter 6.

Weak Double Co-Productivity and Double Universality. It
is possible to prove the above corollary without appeal to double
generativity—i.e. to pass directly from weak double co-productivity
to double universality as follows.

Lemma 2.1. For any recursive function g(x,y) and any r.e. sets A
and B there are recursive functions <j>i(y) and ^(y) such that for
any number i,

(1) i € A =* u^lW = {<7(>i(0>2(0)}>
(2) » i A =>• u^lW = 0,
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(3) t 6 B =>• u»fc(0 = {0(&(0»&(0)}»
(4) t ^ B =» wfaw = 0.

Proof. Let A and J0 be r.e. sets. Let Mi(x,y, £1,22) t>e the r.e.
relation, y € A A x = 5(21,22) and let M%(x, y,z\,22) be the r.e.
relation, y € -B A x = g(zi,z2). Applying Theorem 2.3, Chapter 9,
to MI and MI we obtain recursive functions 0i(y) and <fo(y)> such
that for all i,

(a) w^lW = x : (i € A A x = 0(&(t)»&(0))>
(b) o^2(i) = z : ( i € B A x = flf(^i(t),02(*)))-

(1) and (2) foUow from (a); (3) and (4) foUow from (b).
Now suppose («,/?) is weakly doubly co-productive under g(x, y).

Let (A, B) be a disjoint pair of r.e. sets that we wish to reduce to
(a,f3). Take recursive functions <^i(y) and 4>z(y) as m the above
lemma. We show that g((t>i(y),<j>2(y)) reduces (A,B) to (a,/?).

1. Suppose y e A. Then W0i(y) = {s(^i(y),$2(y))}- Also we have
y <£ B; hence W02(v) = 0. Therefore, 0(<Ai(y),02(y)) G a (by
weak double co-productivity).

2. By a symmetric argument, if y € J0, then g(4>\(y}-,<t)'i(y)) € /?.
3. If y ^ AD J3, then w^^j = 0 and Ufa(y) — 0. Therefore, we have

9((f>i(y)^4>2(y)) £ aU/3 (again by weak double co-productivity).

§3. Effective Inseparability. We recall that a disjoint pair
(a,/3) is said to be E.I. under a recursive function g(x, y} if for every
i and j such that a C w,- and /3 C w; and Wj is disjoint from MJ,
the number g(i,j) £ u>i Uuj. We shall say that (a,/3) is weakly E.I.
under a recursive function #(a;, y) if a is disjoint from /? and for every
i and jf the following conditions hold.

(1) If w,' = a and o?j = /?, then g(i,j} £ a U /3,
(2) If Wj = a and wj = /? U {ff(i,j)}, then 5(1, j) € cc,
(3) If w; = a U {g(i,j}} and w,- = /?, then ^(», j) € /9.

Suppose (a,/3) is E.I. under g(x,y). Then it must be weakly E.I.
under g(x,y) by the following argument: Condition (1) above is
immediate. As for (2), suppose o>; = a and MJ = f3 U {p(i,j)}' ^
9(^1 j) & a) then /? U {<?(*, jf)} is disjoint from a; hence Uj is disjoint
from Ui\ hence g(i,j) <£ u>i Uwj, which means that ^(i,^) ^ {5(»,j)}»
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which is a contradiction. This proves (2). Condition (3) is proved
by a symmetric argument.

Theorem 3. If (a,/3) is E.I.—or even weakly E.I.—and a and ft
are r.e., then (a,/3) is D.U.

Proof. Suppose a and ft are r.e. and (a,/9) is weakly E.I. under
k(x,y). Let g(x,y} = k(y,x). Then it is obvious that (/3,a) is
weakly E.I. under g(x>y). That is, for all x and y, (1) if ujx = ft and
u>y = a, then g(x,y) £ ft\ (2) if u>x = ft and uy = a U {g(x, y)}, then
d(x,y) € ft; (3) if ux = ft U {g(x,y}} and uy = a, then g(x,y) £ a.
By the iteration theorem we can take recursive functions t\(y] and
t-i(y} such that for all z,

We show that (a,/3) is weakly doubly co-productive under the func-
tion h(x,y) = g(t!(x),t2(y)).

1. Suppose Ui = u>j = 0. Then u>tl(j) = ft and wt2(j) = a, so
g(ti(i),h(j)) i ft U a. Hence h(i,j) <£a\J/3,

2. Suppose a;,- = 0 and MJ = {h(i,j)} = {g(ti(i),t2(j))}. Then
vti.(i) = ft and Wt2(j) = « U {g(ti(i),t2(j)}}. Hence

by (2), with x = ti(i) and y = t2(j).
3. By a symmetric argument, if Wj = {<7(^i(0»*2(z'))} and wy — 0?

then offifi) ,^^')) G a.

Since (a,/2) is weakly doubly co-productive, («,/?) is doubly uni-
versal by Theorem 2, Corollary 1.

Exercise 1. It is possible to prove Theorem 3 without appeal to
Theorem 2 or its corollary—that is, we can pass directly from weak
E.I. + r.e. to D.U. as follows.

Step 1. We need the result of Exercise 5 of Chapter 9. [To establish
this result, let Mi(x,y,z) be the r.e. relation x € a V ( y € B Ax = z]
and let M%(x,y, z) be the r.e. relation x £ ft V (y 6 A A x — z). Then
apply Theorem 2.4, Chapter 9 to the relations M\ and M%.]

Step 2. Suppose (a,/?) is weakly E.I. under g(x,y). Let (A, J5) be a
disjoint pair of r.e. sets that we wish to reduce to (a,/3). Take (j>\(y)
and 4>2(y) as in Step 1 and show that the function g(<fii(y),$2(y))
reduces (A, B) to (a,/3).
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§4. A Retrospective Look. Historically, the first proofs of
the Ehrenfeucht-Feferman and the Putnam-Smullyan theorems were
based on creativity and effective inseparability rather than complete
creativity and complete effective inseparability. Now that we have
proved Theorems 1 and 3 of this chapter, we can give the original
arguments.

The Ehrenfeucht-Feferman argument (using our terminology) was
this: Suppose <S is a consistent axiomatizable extension of (R). Then,
(1) S is a Rosser system for sets; (2) all recursive functions of one
argument are strongly definable in S. By (1), some E.I. pair (A, B)
is strongly separated in S by some formula H(v\). Then H(VI)
represents some r.e. superset A' of A disjoint from B. Then the pair
(A', B) is obviously also E.I., hence A' is a creative set (Exercise 8,
Chapter 5). Then by Myhill's theorem, A' is universal. Thus, some
universal set is representable in S. Then by (2), all r.e. sets are
represent able in S.

In the Putnam-Smullyan argument, again some E.I. pair (A, B) is
strongly separated in S by some formula H(v\)\ this formula exactly
separates a disjoint pair (A', B') of r.e. supersets of A and B. Then
(A1, B') is obviously E.I. and since A' and B' are r.e., (A1, B') is D.U.
by Theorem 3. Thus some D.U. pair is exactly separable in S. Hence
by (2), every disjoint pair of r.e. sets is exactly separable in S.

As we have said, these were historically the first arguments. They
used the recursion and double recursion theorems. Then came Shep-
herdson's arguments which used what we might call "Shepherdso-
nian self-reference" in place of recursion theorems. And now, as
we have demonstrated in this volume, by using the notions of com-
plete creativity and complete effective inseparability, we can achieve
the same metamathematical results (about consistent axiomatizable
extensions of (R)) without using either recursion theorems or Shep-
herdsonian self-reference. All three approaches strike us as equally
interesting.

Of course, the results of this chapter also provide alternative proofs
of Theorems A and B of Chapter 6.

Exercise 2. Explain why the last statement is true.



Chapter XI

Three Special Topics

The topics of this chapter are of more specialized interest and are not
necessary for the results of our final chapter. They will probably be of
more interest to the specialist (particularly the results of Section III)
than to the general reader.

/. Uniform Reducibility

We know from Chapter 2 that if all recursive sets are representable
in »S, then S is undecidable. We also know from Chapter 4 that if
all recursively enumerable sets are representable in S, then S is not
only undecidable but generative. We might also ask the question, If
all recursive sets are representable in S, is S necessarily generative?
Shoenfield [1961] answered this question negatively. He constructed
an axiomatizable system in which all recursive sets are representable,
and so the system is undecidable, but he showed that the system is
not creative.

Let us say that all recursive sets are uniformly representable in
S if there is a recursive function g(x) such that for any number i,
if Ui is a recursive set, then g(i) is the Godel number of a formula
which represents u>{ in S. We will show that if all recursive sets are
uniformly representable in «S, then S is generative.1

1We proved this in T.F.S. using Theorem 1, Chapter 10, whose proof in turn uses
the recursion theorem. We gave an alternative proof in Smullyan [1963] based on
Theorem 1*, Chapter 6, which does not use the recursion theorem. The proof we give
in this chapter is simpler still. We sketch the original proof in some of the exercises.
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We also showed in Chapter 2 that if all recursive sets are definable
in S and S is consistent, then the pair (P,R) of its nuclei is re-
cursively inseparable. Under the same hypothesis, is the pair (P,R)
necessarily effectively inseparable? The answer is no. In Shoenfield's
system all recursive sets are not only represent able, but definable.
However, the set P is not creative. Hence the pair (P, Jf?) of nu-
clei of the system, though recursively inseparable, is not effectively
inseparable.

Let us say that all recursive sets are uniformly definable in S if
there is a recursive function g ( x , y ) such that for any numbers i and
j, if Uj is the complement of Wj, then g(i, j ) is the Godel number of
a formula which defines Wj in S. We will show that if all recursive
sets are uniformly definable in S and S is consistent, then the pair
(P,R) is completely effectively inseparable (in fact semi-D.U.). The
proof will be based on (a) of Theorem 2*, Chapter 6.

Remark. Informally speaking, to say that all recursive sets are uni-
formly definable in S is to say that given any index of a recursive
set a as well as an index of its complement, we can find a formula
which defines a in S. The reader might wonder why we require that
we be given an index of the complement of a as well as an index of
a. The fact is that there is no consistent system S with the stronger
property that there exists a recursive function f ( x ) such that for
every number i for which u>; is recursive, /(i) is the Godel number
of a formula which defines a;,' in S. We are indebted to John Myhill
for this observation.

§1. Uniform Reducibility. We will say that a collection C
of r.e. sets is uniformly reducible to a set a if there is a recursive
function f(x,y)—which we call a uniform reduction of C to a—such
that for every i for which w; 6 C, the function f ( i , x ) (as a function
of x) reduces w,- to a.

Lemma 1. If{N, 0} is uniformly reducible to a, then a is generative
relative to {N, 0}.

Proof. Suppose f(x,y) is a uniform reduction of {N, 0} to a. We
show that the function f ( x , x ) is a generative function for a relative
to{JV,0}.

1. Suppose a;,- = N. Then for all x, x £ N *-»• f ( i , x ) € a. Hence
for all x, f(i,x) 6 a, so /(i,z) € a.
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2. Suppose u>; = 0. Then for all x, x € 0 <->• f(i,x) £ a. Hence for
all x, f(i,x} £ a, so f(i,i) $ a.

By 1 and 2, and Proposition 1, Chapter 6, a is generative relative
to {-/V, 0} under the function /(a;,*).

Proposition 1. If the collection {TV, 0} is uniformly reducible to a,
then a is universal.

Proof. By the above lemma and Theorem 1*, Chapter 6.

Theorem 1. // the collection of all recursive sets is uniformly re-
ducible to a, then a is universal.

Proof. Immediate from Proposition 1.

Corollary. If all recursive sets are uniformly representable in S,
then S is generative.

Proof. Suppose g ( x ) is a recursive function such that for all i for
which wt- is recursive, g(i) is the Godel number of a formula that
represents u>; in S. Then the function r ( g ( x ) , y ) uniformly reduces
the collection of recursive sets to P. Then by Theorem 1, P is
universal and, hence, generative.

Remark. We see from the above arguments that, in fact, a sufficient
condition for <S to be generative is that the collection {-/V, 0} be
uniformly representable in S.

Exercise 1. Prove the following generalization of Lemma 1: Sup-
pose that a collection C is uniformly reducible to a under f ( x , y) and
that for every i such that w, € C, the set of all re such that f(x,x) £ w,-
is also in C. Then a is generative relative to C—more specifically,
if t(y) is an iterative function for the relation f(x,x) 6 wy, so that
x € ut(y) iff f(xix) € ujy, then a is generative relative to C under
the function f(t(x),t(x)).

Exercise 2. How does Lemma 1 follow from the result of Exercise 1?

Exercise 3. Using Exercise 1, show that if the collection of all re-
cursive sets is uniformly reducible to a, then a is generative relative
to that collection.

Exercise 4. Show the trivial fact that if a is generative relative to
the collection of all recursive sets, then a is weakly co-productive.

Exercise 5. Using the last two exercises, show that Corollary 1 of
Theorem 1, Chapter 10, yields an alternative proof of Theorem 1
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above.

Exercise 6. Let Ci be the collection consisting of the empty set
and all sets with exactly one element. Show that if C\ is uniformly
reducible to a under a 1-1 function f ( x , y), then a is universal. [Hint:
Show that C\ and f ( x , y ) then satisfy the hypothesis of Exercise 1.]

§2. Uniform Reducibility for Pairs. We shall say that a
collection V of disjoint ordered pairs of r.e. sets is uniformly reducible
to a disjoint pair («,/#) under a recursive function g(x,y, z} if for
every i and j such that (o;,-,u;j) £ T>, the function g(i,j,x) reduces
(w,-,wj) to (a,/?).

Lemma 2. // the collection £>2 (viz. {(N,®),(Q,N)}) is uniformly
reducible to (a, (3), then (a,/3) is D.G. relative to T>2.

Proof. Suppose £>2 is uniformly reducible to (a,/3) under g(x,y,z).
We show that g(x,y,y) is a D.G. function for (a,/?) relative to Z>2.

Suppose Ui = N and ujj = 0. Then g(i,j,x) reduces (JV, 0) to
(a,/3), so for all x, x G JV <-> g(i,j,x) € a and x € 0 <-> g(i,j,x) € /3,
which means that 5r(i,j, a;) € a and g(i,j,x) £ /3,so g(i,j,x) € a —/3.
Therefore, g(i,j,j) € a — /3.

Similarly, if w,- = 0 and Wj = JV, then g(i,j,j) G /? — a. Then by
statement (1), Proposition 2, Chapter 6, (a,/3) is D.G. relative to
Z>2 under g(x,y,y).

Remark. The function g(x,y,x) would have served as well—in fact
for any constant c, the function g(x, y,c) would work.

From Lemma 2 and (a) of Theorem 2*, Chapter 6, we have

Proposition 2. IfD? is uniformly reducible to (a,ft), then (a,/?)
is semi-D. U.

Theorem 2. If the collection of all complementary pairs (A, A) of
r.e. sets is uniformly reducible to (a,/3), then (a,/?) is semi-D.U.

Corollary. If all recursive sets are uniformly definable in <S and S
is consistent, then the pair (P, R) of nuclei of S is semi-D. U. (and,
hence, completely E.I.).

Proof of Corollary. Suppose S is consistent and that g ( x , y ] is a
recursive function such that for any recursive set u;;, if LJJ is the
complement of w,-, then g(i,j) is the Godel number of a formula
which defines w,- in S. By the assumption of consistency, the formula
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completely represents w, in S and, therefore, exactly separates the
pair (u>j,u>j) in <5. From this it follows that the function r(g(x, j/),z)
is a uniform reduction of the collection of all complementary pairs
of recursive sets to the pair (P,R). Then by Theorem 2, the pair
(-P,-R) is semi-D.U. (and, hence, completely E.I.).

The exercises that follow concern the notion of uniform definability
of recursive functions in a system S.

Exercise 7. We shall call a number i an (r.e.) index of a recursive
function /(#) if i is an index of the relation f(x) = y.

Show that there is a recursive function <f>(x) such that for any
number i, if i is an index of a recursive function /(#), then </>(i) is
an index of the relation /(a;) / y.

Exercise 8. Let us say that all recursive functions of one argument
are uniformly definable in S if there is a recursive function g(x) such
that for any number i, if i is an index of a recursive function /(#),
then g(i) is the Godel number of a formula that defines f ( x ) in S.

Show that if S is effectively a Rosser system for binary relations,
then all recursive functions of one argument are uniformly definable
in 5. [We suggest you use the last exercise.]

Exercise 9. Prove that there is a recursive function t(x, y) such that
for any numbers i and j, if w,- and w,- are complementary, then t(i,j)
is an index of the characteristic function of u;;.

Exercise 10. Show that there is a recursive function 4>(x) such that
for any number i and any set A, if i is the Godel number of a formula
that defines in S the characteristic function of A, then <f>(i) is the
Godel number of a formula that defines A in S.

Exercise 11. Using the last two exercises and Theorem 2, prove
that if all recursive functions of one argument are uniformly definable
in S and S is consistent, then S is a completely E.I. system.

II. Pseudo-uniform Reducibility

In Ch. 2 we showed

Theorem Ci (Th. 4, Ch. 2). If all recursive sets are representable
in a system S, then S is undecidable.
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Theorem d (Th. 13, Ch. 2). // all recursive sets are definable
in S and S is consistent, then not only is S undecidable, but the pair
(P,R) is recursively inseparable.

The above theorems combine notions of recursive function theory
with those of first-order systems. We shall now obtain generaliza-
tions of them of a purely recursive function theoretic nature and we
will also show that the conclusions of Theorems C\ and Ci hold un-
der weaker hypotheses. The results that follow are those of Smullyan
[1963 A].

§3. Pseudo-uniform Reducibility. We know that if every
r.e. set is reducible to a set a, then a must be non-recursive (in fact
even generative). Suppose that every recursive set is reducible to a.
Does it necessarily follow that a must be non-recursive? Certainly
not, for if a is any non-empty set whose complement is non-empty,
then every recursive set A is reducible to a as follows: Take any
number a\ in a and any number a? not in a and define g(x) = ai if
x 6 A, and g(x) = a% if x £ A. Since A is recursive, so is the function
g(x) (why?) and for all a;, x € A «-»• g(x) € a, so g(x) reduces A to
a. Thus, it is not true that if all recursive sets are reducible to a,
then a must be non-recursive.

On the other hand, as we saw in Part I of this chapter, if the
collection of all recursive sets is uniformly reducible to a, then a
is not only non-recursive, but even generative. Thus, to establish
the non-recursivity of a set a, the hypothesis that all recursive sets
are reducible to a is too weak, whereas the hypothesis of uniform
reducibility is stronger than necessary (as we will see). And so we
turn to a notion of intermediate strength.

We will say that a collection C of number sets is pseudo-uniformly
reducible to a if there is a recursive function g(x,y)—which we call
a pseudo-uniform reduction of C to a—such that for any set A in C,
there is some number i such that g(i, x) (as a function of x) reduces
A to a (i.e. for all x, x € A «-» g(i,x) 6 a). If C is a collection of r.e.
sets, our definition does not require that for any index i of a member
A of C, g(i,x) reduces A to a, but only that there is some number
i (not necessarily even an index of A) such that g(i,x) reduces A to
a. Thus, the notion of pseudo-uniform reducibility is much weaker
than uniform reducibility. We shall now show that if the collection
of all recursive sets is pseudo-uniformly reducible to a, then a must
be non-recursive. We first show the following stronger fact.



134 Chapter XI. Three Special Topics

Theorem 3. A sufficient condition for a set a to be non-recursive
is that there is a recursive function f ( x ) such that for every recursive
set A, there is at least one number i such that i <E A <->• f ( i ) <E en.

Proof. Suppose that the condition holds. Consider any recursive set
A. Then f~l(A) is recursive. Hence, there is a number i such that
i € f~l(A) <-» f ( i ) € a. Hence, /(«') € A <-> f ( i ) e a. This shows
that A cannot be the complement 5 of a and, hence, a cannot be
recursive, so a cannot be recursive.

As a corollary we have

Theorem 4. If the collection of all recursive sets is pseudo-uniformly
reducible to a, then a is non-recursive.

Proof. Suppose g(x,y) is a pseudo-uniform reduction of all recursive
sets to a. Let f ( x ) be the recursive function g(x,x). Then for any
recursive set, there is a number i such that for all a;,

Hence i 6 A <-» g(i,i) 6 a, and so i € A «-»• /(i) G a. Then by
Theorem 3, a is non-recursive.

Metamathematical Applications. Theorem 4 contains the es-
sential mathematical essence of Theorem Ci, for suppose all recursive
sets are representable in S. We consider the representation function
r(x,y) of «S (r(i,j) is the Godel number of J3,-[?']). Then r(x,y) is
obviously a pseudo-uniform reduction of the collection of all recur-
sive sets to the set P, and so by Theorem 4, the set P cannot be
recursive (which means that S is undecidable).

From Theorem 3, however, we get the following apparently stronger
result.

Theorem C^. Suppose that for every recursive set A there is a num-
ber i that is the Godel number of a formula Fi(vi) such that Fi(i) is
provable in S iffi€ A. Then S is undecidable.

Proof. Assume hypothesis. Then for every recursive set A there is a
number i such that d(i) € P <-» i € A, where d(x) is the diagonal
function r(x,x). Then P is non-recursive by Theorem 3.

§4. Pseudo-uniform Reducibility for Pairs. We now con-
sider a collection T> of ordered pairs of r.e. sets. We shall say that
Z> is pseudo-uniformly reducible to a pair (a,/3) of number sets if
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there is a recursive function g(x,y) — which we call a pseudo- uniform
reduction of D to (a,/3) — such that for every pair (A, B) in £>, there
is a number i such that g(i,x) (as a function of x) reduces (A, B)
to («,/?). Let us note that if h(x,y,z] is a uniform reduction of T>
to (a,/?) (as denned in Ch. 6) and if we take g(x,y) to be the func-
tion h(Kx, Lx, y), then g(x, y) is a pseudo-uniform reduction of V to
(a,/3) (because for any pair (u^wy) in Z>, h(i,j,y) reduces (wj,a;j)
to (a,/3), but h(ij,y) = g(J(i,j),y), and so p(c,j/) reduces (w,-,Wj)
to (a,/?), where c = «7(i, .?'))• Thus, pseudo-uniform reducibility (for
pairs) is a weaker notion than uniform reducibility.

Theorem 5. A sufficient condition for a disjoint pair (a,/?) to be
recursively inseparable is that there is a recursive function /(#) such
that for every complementary pair (A, B) of recursive sets (B = A),
there is a number i such that i g A «-» /(?) € a, andi 6 B <-»• /(i) € /?.

Proof. Assume hypothesis. Suppose (a,/3) is recursively separable.
Then there is a complementary pair (A, B) of recursive supersets of
a and 0 respectively. Then (f~l(B),f~1(A)) is a complementary
pair of recursive sets, and so there is a number i such that

Hence f ( i ) € B <-> f ( i ) <E a, and /(i) € A <-»• /(i) € P. This is
clearly impossible, since a C A and /3 C B and A is the complement
of B. Therefore, (a,/?) cannot be recursively separable.

Next we note that if g(x,y) is a pseudo-uniform reduction of the
collection of all complementary pairs of recursive sets to (a, /3) (where
a and j3 are disjoint), then the hypothesis of Theorem 5 holds, taking
/(#) = #(a:,:e), and we have

Theorem 6. If the collection of all complementary pairs of recur-
sive sets is pseudo-uniformly reducible to (a,/?) (where a. and ft are
disjoint) then (a,/?) is recursively inseparable.

Metamathematical Applications. Theorem €2 is but a special
case of Theorem 6, because if all recursive sets are definable in S and
S is consistent, then all recursive sets are completely represent able
in S. Hence r(x,y) is a pseudo-uniform reduction of the collection
of all complementary pairs of recursive sets to the pair (P,R).

From Theorem 5, however, we get the apparently stronger result.

and
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Theorem C£. A sufficient condition for the nuclei (P, R) of a sys-
tem S to be recursively inseparable is that for every recursive set A,
there is a number i that is the Godel number of a formula Fi(vi)
such that -Fi(«) is provable in S iff i € A, and F,-(i) is refutable in S
iff i A.

III. Some Feeble Partial Functions

In this section we will obtain some curious strengthenings of some
earlier results.

Let VK^i' • • • ixn) be a function denned on some, but not neces-
sarily all, n-tuples of natural numbers. We call ty a partial recur-
sive function if the relation ^>(a:i, . . . ,#„) = y (i.e., the set of all
(n+ l)-tuples (xi,... ,xn,y) such that tfi is denned on (xi,...,xn)
and assigns it the value y) is an r.e. relation. [Unlike the case of total
recursive functions, this does not, in general, imply that the relation
i j > ( x i , . . . , xn) = y is recursive. It does, however, if the domain of t/j
happens to be recursive.]

The results of this section are about partial recursive functions.

§5. Feeble Co-productive and Generative Functions.
It is well known (cf., e.g., Rogers [1967]) that a sufficient condition
for a set a to be co-productive is that there exists a partial recursive
function i/)(x) such that for all i, if w,- is disjoint from a, then tj) is
denned on i and ijj(i) £ a U a;,-. We will show that the hypothesis
can be simultaneously weakened in two ways, (1) Except for the case
that ijjj. = 0, it is not necessary to assume that if u>,- is disjoint from
a, then ip is denned on i, but only that if w,- is disjoint from a and
if ip happens to be defined on i, then ip(i) g a;,-; (2) moreover, this
need hold only when u>,- happens to be the set {if>(i)}. This leads to
the following definition.

Definition 1. a is feebly co-productive under a partial recursive
function t/)(x) iff for every i, the following two conditions hold:

(1) If a;,- = 0, then if} is defined on i and ip(i) g a.
(2) If ijj is defined on i and a;, = {V'(O)' then ifi(i) € a.

We will prove
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Theorem 7. If a is feebly co-productive (under some partial recur-
sive function), then a is universal.

We will also state and prove a strengthening of Theorem 2*, (b),
Chapter 6.

Definition 2. a is feebly generative under a partial recursive func-
tion ty^x) iff for every i, the following two conditions hold:

(1) If ijj{ = 0, then ife is denned on i and t/)(i) £ a.
(2) If u>i = N and if i/> happens to be defined on i, then t()(i) € a.

Theorem 8. If a is feebly generative (under some partial recursive
function), then a is universal.

The proofs of both Theorem 7 and Theorem 8 utilize the recursion
theorem and bring to light Theorem I below (which we find to be
of particular interest). Let us call a (total) recursive function h(y)
an associate of a partial recursive function ip(y] if the following two
conditions hold:

1. For every number i, V is defined on h(i) — i.e., the function
ifihy is total.

2. For every number i, Uh(i) = u>j.

Theorem I. If ip(y) is defined on all indices of the empty set, then
tt>(y) has an associate.

We first prove two lemmas.

Lemma 3. For any r.e. set A, there is a recursive function h(y)
such that for all y,

(1) //%) € A, then uh(y) = uy.
(2) I f h ( y ) < £ A , then uh(y} = 0.

Proof. Given an r.e. set A, let M(x,y,z) be the r.e. relation

By the recursion theorem, there is a recursive function h(y) such
that for all y, uh(y) = x : M(x,y,h(y)), so

If h(y) € A, then u;/^) = x : x €. uy = uy; if h(y) £ A, then
x € ijJy A h(y) 6 A is false for all x, hence Uhly) — 0-

Lemma 4. If A is r.e. and contains all indices of the empty set, then
there is a recursive function h(y] such that for all y the following two
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conditions hold:

(!) WM») = uv>(2) %) e A.
Proof. Assume hypothesis. Let h(y) be as in Lemma 3. Suppose
h(y) £ A. Then by (2) of Lemma 3, ^h(y) = $• Hence h(y) is an index
of 0 and, hence, h(y) 6 A by hypothesis. This is a contradiction.
So for all y, h(y) 6 A, which proves (2). Then by (1) of Lemma 3,
ijJh(y) — uy f°r a^ 2/> which proves (1) above.

Proof of Theorem I. Suppose if>(y) is a partial recursive function
defined on at least all indices of the empty set. Let A be the domain
of ij) (the set of numbers on which tf)(y} is defined). Then A is r.e.
and A contains all indices of the empty set. Take h(y) satisfying
Lemma 3. Then for all y, ^h(y) — uy Also for all y, h(y) 6 A, which
means ^ is defined on h(y). Therefore, h(y) is an associate of tfi(y).

Proof of Theorem 7. Suppose a is feebly co-productive under t^(y).
By Theorem I, ip(y) has an associate h(y). For any number i,

1. Suppose Ui = 0. Then u>h(i) = 0- Since ifi is defined on h(i),
then tyhi £ a (since a is feebly co-productive under i/>).

2. Suppose Wj = {ij}hi}. Then u>^ — {ifrhi}. Hence i^hi € a
(since a is feebly co-productive under ^).

By 1 and 2, a is weakly co-productive under tjjhy. Then by Corol-
lary 1 of Theorem 1, Chapter 10, a is universal.

Proof of Theorem 8. Suppose a is feebly generative under i^(y}.
Since ij) is defined on all indices of the empty set, it has an associate
h(y) (by Theorem I). For any z,

1. Suppose uii = 0. Then u>ui\ = 0. Hence ifrhi £ a.
2. Suppose a;,- = N. Then w/^,-) = N. Also ^ is defined on h(i).

Hence tfthi € a.
By 1 and 2, a is generative relative to {0,JV} under t[>hy. The

conclusion follows by Theorem 1*, Chapter 6.

§6. Double Analogues. All the results of §5 have double
analogues. In what follows, i/)(x,y) is a partial recursive function of
two variables.
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Definition 3. A disjoint pair (a,/3) is feebly doubly co-productive
under if)(x,y) iff for all i and j, the following conditions hold:

(1) If u>i = u>j = 0, then i/> is defined on (i, j) and i(>(i,j) £ a U ft.
(2) If if) is defined on (i,j) and u>,- — 0 and u>j = {^(i,j)}, then

^(*,J) € ft.
(3) If ^ is defined on (i,j) and a;,- = {^(«,j)} and o>j = 0, then

V>(«,j) € a.

Definition 4. A disjoint pair (a, (3) is /eefe/y D.G. under t^(x,y) iff
for all i and j, the following conditions hold:

(1) If (jji = ujj = 0, then if) is defined on (i, j) and ^>(i,ji) ^ a U /?.
(2) If Wj = JV and Wj = 0 and if ̂  is defined on (i, j), then

(3) If u>{ = 0 and u>j = N and if if> is defined on (i, j), then

We will prove

Theorem 9. If (a,/?) is feebly doubly co-productive (under some
partial recursive function tl>(x,y)), then (a,/3) is D.U.

Theorem 10. 7jf(a,/3) is feebly D. G. (under some partial recursive
function il>(x,y)), then (a,/3) is D.U.

To prove Theorems 9 and 10, we need to introduce a "double"
analogue of the notion of an associate. By a double associate of a
partial recursive function ^(x,y), we shall mean an (ordered) pair
(hi(x, i/), h%(x,y)) of (total) recursive functions such that the follow-
ing two conditions hold:

1. The function i/>(hi(x,y),h2(x,y)) is total.
2. For all numbers i and j, Whi(ij) — w« and w/i2(i,j)

 = wj-

In place of Theorem I, we now need

Theorem II. If for all indices i and j of the empty set, if) is defined
on (i,j), then i/j has a double associate.

Again we shall first prove two lemmas.

Lemma 5. For any r.e. relation R(y\,y-i), there are recursive func-
tions hi(yi,yz) and ^2(2/1)^2) such that for all y\ and yi,

C1) wfci(»i,*a) = * : (* € uin A R(hi(yi,y2),h2(yi,y2})),
(2) Wfc2(»i,») = x : (x e UV2 A R(hi(yi,y2),h2(yl,y2))).
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Proof. Let MI(O:,J/, 21,22) be the relation x € wy A R(z\,z-i). Let
Mz(x,y,z\,z-i) be the same relation. Then apply Theorem 2.1,
Chapter 9.

Lemma 6. For any r.e. relation R(yi,y2), if for all i and j such
that u>i = Uj = 0 and R(i,j) holds, then there are recursive functions
hi(yi,yi) and hi(y\,y2) such that for all y\ and y?,

(1) R(hl(yl,y2),h2(yi,y2)).

(2) ^1(2/1,2/2) =ww and wMs/i ,2/2) =ww

Proof. Assume hypothesis. Take recursive functions ^1(2/1,2/2) and
^2(2/152/2) satisfying Lemma 5.

Suppose -R(/»i(2/i, 2/2)5^2(2/1,2/2)) doesn't hold. Then by (1) and
(2) of Lemma 5, w^^^) and Wfc2(yii!Q) will both be empty. Hence
-^(^1(2/152/2), ^2(2/152/2)) will hold (by hypothesis), which is a contra-
diction. Hence, R(hi(yi,y^), ^2(2/1,2/2)) must hold. By (1) and (2)
of Lemma 5, we see that w fc l(WlJf t) = ww and w^^.^) = wV2.

Proof of Theorem II. Assume hypothesis. Define R(x,y) iff i(>
is denned on (a;,?/). Then R is r.e. and satisfies the hypothesis of
Lemma 6. The conclusion easily follows by Lemma 6.

Using Theorem II, the proofs of Theorems 9, 10 are obvious mod-
ifications of the proofs of Theorems 7 and 8 and are left as exercises.
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Uniform Godelization

We conclude this volume with some pretty applications of recursion
and double recursion theorems and some variants of Shepherdson's
arguments. We obtain a substantial strengthening of Shepherdson's
theorem as well as some new results on uniform incompletability,
which we now define.

Given a consistent axiomatizable system <S, we let Sn be that sys-
tem whose axioms are those of «S together with all formulas whose
Godel number is in wn. [We might refer to Sn as the nth extension
of S.] We call S uniformly incompletable if there is a formula H(v\)
such that for any n for which Sn is consistent, H(n) is an undecid-
able sentence of «5n. [In a sense, for each n for which $n is consistent,
H(n) can be thought of as asserting its own non-provability in Sn—
or more accurately that it is not provable in Sn before it is refutable
in Sn.] Marian Pour-El [1968] proved that every consistent axiom-
atizable extension of (JR) is uniformly incompletable (a part of her
argument is a variant of the proof of the Putnam-Smullyan theorem).
We have been independently working on this problem along entirely
different lines which reveal that such systems possess some interest-
ing properties apparently stronger than uniform incompletability. It
is to these stronger properties that we first turn.

/. The Sentential Recursion Property

We shall say that S has the sentential recursion property if for every
r.e. relation R(x,y) there is a number h such that x : R(x,h) is
represented in «S by a formula H(v\) whose Godel number is h. Using
the weak recursion theorem, we will prove a result that implies that

141
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every consistent axiomatizable extension of (jR) has the sentential
recursion property.

§1. Effectively Godelian Systems. In T.F.S. we termed a
system S Godelian if all r.e. sets are representable in S. We shall
now say that S is effectively Godelian if all r.e. sets are uniformly
representable in S as defined in Ch. 4—i.e. if there is a recursive
function g(x) (under which S will be said to be effectively Godelian)
such that for every number i, g(i) is the Godel number of a formula
which represents u;; in S.

Theorem 1. If S is effectively Godelian, then S has the sentential
recursion property.

Proof. Suppose S is effectively Godelian under g(x). Now consider
any r.e. relation R(x, y). By Theorem 1.1, Ch. 8, there is a number k
such u>k = x : R(x,g(k}}. But g(k) is the Godel number of a formula
that represents u>k and, hence, represents x : R(x,g(k)~). And so we
take h = g(k).

We proved in Ch. 4 (Proposition 5, Corollary) that every consis-
tent axiomatizable extension of (R) is effectively Godelian. And so
by Theorem 1 we have

Theorem R\. Every consistent axiomatizable extension of (R) has
the sentential recursion property.

Some consequences of the Sentential Recursion Property.
For any number n, let us define Wn as the set of all expressions of
S whose Godel number is in un.

Theorem 1.1. If S has the sentential recursion property, then for
any recursive function f ( x ) , there is a formula H(v\) such that for
every number n, H[n] is provable in S if, and only if, H[n] 6 Wftn).

Proof. Suppose S has the sentential recursion property. We let r(x,y)
be the Godel number of Ex[y] (as usual). Now, given a recursive
function /(#), we take R(x,y) to be the r.e. relation r(y,x) 6 uf(x)-
By hypothesis there is a formula H(v\) with Godel number h which
represents x : R(x,h). Then H(v\) represents x : r(h,x) € ^>f(x)i

 an<l
so for every number n, H[n] is provable in S <-> r(h,n) 6
H[n] 6 W/(n) (since r(h,n) is the Godel number of H[n]).

wf(n)
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Corollary. If S has the sentential recursion property, then there is
a formula H(VI) such that for every n, H[n] is provable in S if, and
only if, H[n] € Wn.

Proof. By Theorem 1.1, taking the identity function for /.

By Theorems 1 and 1.1 we have

Theorem 1.2. If S is effectively Godelian, then there is a formula
H(VI) such that for all n, H[n] is provable in S if, and only if,
H[n] € Wn.

Remark. Theorem 1.2 above is, of course, a stronger result than
Theorem 3 of Chapter 4 (which says only that every effectively
Godelian system is sententially generative). To obtain Theorem 3
of Chapter 4 from Theorem 1.2 above, just take cr(x) to be r(h,x).

Exercise 1. Prove that S has the sentential recursion property iff
the following condition holds: For every recursive function /(x),
there is a formula H(VI) with Godel number h which represents
w/(fc) in S.

Exercise 2. Suppose that S has the sentential recursion property.
Prove that for any r.e. relation R(x, y) there is a formula -ff(vi) with
Godel number h such that for every number n, H[n] is provable in
S iff R(n,gnH[n]). [By gn X we mean the Godel number of X.}

Exercise 3. Show that a system S satisfies the conclusion of Ex. 2
iff S satisfies the conclusion of Theorem 1.1.

//. DSR and Semi-DSR Systems

We now turn to some properties that will prove more significant. We
will say that S has the double sentential recursion property—in short
that S is DSR—if for any disjoint r.e. relations R\(x, y) and RI(X, y),
there is a number h such that Eh is a formula (in just the free variable
vi) which exactly separates x : R\(x,h) from x : R<2,(x,h}.

We shall say that S has the semi-double sentential recursion
property—in short, that S is semi-DSR—if for any disjoint r.e. re-
lations Ri(x,y) and R2(x,y}, there is a formula H(VI) with Godel
number h that strongly (but not necessarily exactly) separates x :
Ri(x,h) from x : _R2(x,/i). We note that this condition implies (in
fact is equivalent to) the condition that for any r.e. relations Ri(x,y)
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and RI(X, y) (not necessarily disjoint), there is a formula Eh{v\) that
strongly separates

from

(because for any r.e. relations Ri(x,y) and Ri(x,y), there exists
disjoint r.e. relations R I ' ( X , y ) and R%(x,y) such that Ri-R% C R^
and J?2 - ^i C Ry).

One reason we are interested in semi-DSR systems is that any
such system which is consistent and axiomatizable is uniformly in-
completable (as we will see).

§2. Rosser Systems For Binary Relations.

Theorem 2.

(a) If S is a Rosser system for binary relations, then S is semi-
DSR.

(b) If S is an exact Rosser system for binary relations, then S is
DSR.

Suppose S is a Rosser system for binary relations. Let g(ri) be
the Godel number of En[vi,n] (i.e. of Vt>2(t>2 = » D En)). The func-
tion g(x) is recursive and for any number n, Egin\ is the expression
En[vi,n]. If En(v\,vi) is a formula in the variables v\ and v%, then
Eg(n) is a formula in »i, and for any number m, Egtn\[m] is the
sentence En[m,n].

Given any disjoint binary relations -fii(x, y) and R2(x, y), the rela-
tions Ri(x,g(y)) and Rz(x,g(y)) are r.e. and disjoint. Hence, there is
a formula Ek(vi,vz) which strongly separates the relation Ri(x,g(y))
from RI(X,g(y)}; hence Ek[v\,k] strongly separates x : Ri(x,g(k))
from x : R I ( X , g ( k ) ) ; hence Eg(k)(v\) (which is Ek[vi,k]) effects
this separation. Thus Eh(v\) strongly separates x : Ri(x,h) from
x : Rz(x,h), where h = g(k).

Proof of (b). HS is an exact Rosser system for binary relations, then
there is some k such that ^(^1,173) exactly separates Ri(x,g(y))
from Rz(x,g(y)) (assuming R\ and RZ are disjoint) and thus h (viz.
g ( k ) ) is the Godel number of a formula that exactly separates x :
Ri(x,h) from x : R%(x,h}.
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Consistent Axiomatizable Rosser Systems for Binary
Relations. It is obvious that if S is DSR, then it is also an ex-
act Rosser system for sets (because if A\ and AI are disjoint r.e.
sets, we take Ri(x,y) iff a; 6 AI, and Ri(x,y) iff a; € A2. Then the
relations R\ and R? are r.e. and disjoint and x : Ri(x,h) = AI and
x : Rz(x,h) = AI). Thus, the following result is an extension of
Shepherdson's exact separation theorem (Th. 82, Ch. 0).

Theorem 2'. If S is a consistent axiomatizable Rosser system for
binary relations, then S is DSR.

Proof. This is an interesting consequence of Theorem 82* of Ch. 0.
Assume hypothesis. We take the same recursive function g(x) as
in the proof of Theorem 2 (g(n) is the Godel number of En[vi,n]).
Then, given disjoint r.e. relations Ri(x,y) and R%(x,y}, the rela-
tions Ri(x,g(y)) and Ri(x,g(y)} are disjoint and r.e., so by Th. 82*,
there is a formula -£^(^1,^2) such that Ek[v\,k\ exactly separates
x : Ri(x,g(k)) from x : R2(x,g(k)}. And so Eg^(v\) effects this
exact separation.

We shall later prove a much stronger result, but for now, Theo-
rem 2' suffices to yield

Theorem R2. Every consistent axiomatizable extension of (R) has
the double sentential recursion property.

§3. Effective Rosser Systems for Sets. We recall from
Chapter 5 that by a Rosser function for S we mean a recursive
function 7r(x,y) such that for all numbers i and ji, ir(i,j) is the Godel
number of a formula jB^,-j)(«i) which strongly separates u>j — Uj from
(jjj — u>i (and, hence, Wj from Wj, if these two sets are disjoint). If
-^ir(ij) exactly separates (w^Wj) (provided they are disjoint), then
we call w(x,y) an exact Rosser function for «S. We say that <5 is
effectively a Rosser system (effectively an exact Rosser system) for
sets, or that S is an effective Rosser system (effective exact Rosser
system) for sets, if there is a Rosser function (exact Rosser function)
for S.

We proved in Chapter 5 (Th. 8 and Th 8.1) that if S is a Rosser
system for binary relations, then it is effectively a Rosser system for
sets, and if S is an exact Rosser system for binary relations, then S
is effectively an exact Rosser system for sets. And so the following
theorem is a strengthening of Theorem 2.
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Theorem 3.

(a) IfS is effectively a Rosser system for sets, then S is semi-DSR.
(b) If S is effectively an exact Rosser system for sets, then S is

DSR.

Proof. We must now use a weak double recursion theorem in place
of a weak recursion theorem.

Suppose ?r(a;,2/) is a Rosser function for S. Consider any two r.e.
relations R\(x,y) and Ri(x,y). By Theorem 1.1, Chapter 9, there
are numbers a and b such that

and

Now suppose Ri(x,y) and R?(x,y) are disjoint relations. Then the
sets u>a and cjfc are disjoint.
Proof. Proof of (a) Since n(x,y) is a Rosser function for «S, then
En(a,b) is a formula that strongly separates u>a from u>& in S. Hence
it strongly separates a; : Ri(x,w(a,b)} from x : R^(x,Tr(a,b)).
Proof. Proof of (b) If n(x,y) is an exact Rosser function for S, then
E^ia b\ exactly separates this same pair.

§4. Some Stronger Properties. One of our aims is to show
that if S is consistent, axiomatizable and also effectively a Ros-
ser system for sets, then S is uniformly incompletable. For this
purpose, Theorem 3(a) is enough. But we have another aim in mind
(which will be apparent in the final section of this chapter) for which
we will need a strengthening of Theorem 3, to which we now turn.

We will say that S is effectively DSR if there is a recursive func-
tion h(x,y) (under which S will be said to be effectively DSR) such
that for any disjoint r.e. relations Ri(x,y) and Rj(x,y), the num-
ber h(i,j} is the Godel number of a formula that exactly separates
x : Ri(x,h(i,j)) from x : Rj(x,h(i,j)) in S.

We will say that S is effectively semi-DSR under h(x,y) if for
any two r.e. relations Ri(x,y) and Rj(x,y) (not necessarily disjoint),
h(i,j) is the Godel number of a formula that strongly separates

from
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The following theorem is the strengthening of Theorem 3 that we
will later need.

Theorem 3*.

(a) IfS is effectively a Rosser system for sets, then S is effectively
semi-DSR.

(b) If S is effectively an exact Rosser system for sets, then S is
effectively DSR.

Proof. We now need to use a "strong" double recursion theorem
(Th. 2.6, Ch. 9).

Proof of (a). Suppose ir(x,y) is a Rosser function for S. By Th. 2.6,
Ch. 9, there are recursive functions t\(y\, j/2) and ^2(2/1,2/2) suc^ tnat

for all i and j,

C1) "tiO'J) = x '• -Rt(*»T(*i(«»j)»*2(«,j)))»
(2) W*2(i,7) = X '• *j(*»T(<l(»»j).*2(»,j)))-

We let h(x,y) = ir(ti(x,y),t2(x,y)). Then for any numbers i and j,
h(i,j) is the Godel number of a formula Eh(i,j) tnat strongly sepa-
rates wtl(t-j) -Wi2(,-j) fromo;i2(iij) -o;il(i)j) and, hence, strongly sep-
arates x : Ri(x,h(i,j)) — x : Rj(x,h(i,j}) from x : Rj(x,h(i,j)) — x :
Ri(x,h(i,j)).

Proof of (b). If Tf(x,y~) is an exact Rosser function for «S, then if the
relations R^(x,y) and Rj(x,y) are disjoint, so are the sets ^(ij) and
^t2(i,j)- Hence these sets are exactly separated by EMIJ)-

To complete the picture, let us say that S is effectively SR (ef-
fectively has the sentential recursion property) if there is a recursive
function h(x) such that for every number i, the number h(i) is the
Godel number of a formula which represents x : Ri(x,h(i)) in <5.
Then Theorem 1 has the following strengthening.

Theorem 1*. If S is effectively Godelian, then S is effectively SR.

We also remark that the converses of Theorem 1* and of (a) and
(b) of Theorem 3* all hold, and so we have

(1) S is effectively Godelian if and only if S is effectively SR.
(2) S is effectively a Rosser system for sets if and only if S is effec-

tively semi-DSR.
(3) S is effectively an exact Rosser system for sets if and only if <S

is effectively DSR.

We leave the proofs of these conditions as exercises that follow.
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Exercise 4. Prove Theorem 1* by using Theorem 2.1, Chapter 8.

Exercise 5. Using the iteration theorem, show that there is a re-
cursive function t(z) such that for all i, x and y,

Now show that if S is effectively SR under h(x), then S is effec-
tively Godelian under h(t(x)).

Next, show that if S is semi-DSR (DSR) under h(x,y), then
h(tx,ty) is respectively a Rosser function (exact Rosser function)
for<S.

///. Rosser Fixed Point Properties and Uniform
Incompletability

We recall that we are letting Sn be that system whose axioms are
those of S together with all formulas in Wn. And we are defining
S to be uniformly incompletable if there is a formula H(v\) such
that for any n for which Sn is consistent, the sentence H(n) is an
undecidable sentence of Sn- We now turn to an interesting prop-
erty which is implied by the property of being semi-DSR and which
in turn implies uniform incompletability (assuming consistency and
axiomatizability).

§5. Rosser Fixed Point Properties. We will say that S
has the Rosser fixed point property if for any recursive functions f i ( x )
and /2(aO, there is a formula H(v\) such that for every n for which
w / l n and U f 2 n are disjoint,

(1) H[n] € Wf^n) =$• H[n] is provable in S.
(2) H[n] € Wh(n) ^ H[n] is refutable in S.

If, in (1) and (2), we can replace =$>• with <->, then we will say that
<S has the exact Rosser fixed point property.

Theorem 4.

(a) If S is semi-DSR, then S has the Rosser fixed point property.
(b) If S is DSR, then S has the exact Rosser fixed point property.
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Proof of (a). Suppose S is semi-DSR. Given recursive functions f i ( x )
and h(x), we let Ri(x,y), be the relation Ey[x].e W^(x) (it is r-e->
since it is the relation r(y,x) 6 ufi(x)} and we let R%(x,y} be the r.e.
relation Ey\x] & W/3(x). Then there is a formula H(v\) with Godel
number h that strongly separates

Now suppose Ufi(n) and w/2(n)
 are disjoint. Then

(1) H[n] € WA(B) =>• # [ri] € W/I(B) - W/2(n) =>
J?i(n,/i) A ~ R-2(n,h) =$• H[n] is provable in «S.

(2) Similarly, fT[n] e W/2(n) => -^N is refutable in «S.

Proof of (b). Suppose S is DSR. Given recursive functions /i(x)
and /2(a;), we now define Ri(x,y) iSr(y,x) e Ufi(x) before r(y,x) 6
w/2(a;), and we define R2(x,y) iff r(y,a;) e ^/2(a:) before r(7/,o;) €
w/j^). The relations jRi(a;,t/) and Rz(x,y) are disjoint and r.e., so
now there is a formula H(v^) with Godel number /i which exactly
separates x : Ri(x,h) from x : R^(x,h). Now suppose w/^n) and
uh(n) are disjoint. Then

(1) ff[n] e W/l(n) <-»• r(»,/») 6 w/l(^) «• r(n,h) e w/l(n) before
r(n, h) € ^/2(n) *̂  ^i(^j ̂ ) <"*• ^[™] is provable in S.

(2) Similarly, #[n] € W>2(n) «• Jf[n] is refutable in S.

From Theorems 3 and 4 we have

Theorem 4.1.

(a) /jf<S is effectively a Rosser system for sets, then S has the Rosser
fixed point property.

(b) If S is effectively an exact Rosser system for sets, then S has
the exact Rosser fixed point property.

Exercise 6. Show that S is semi-DSR iff the following condition
holds: For any recursive functions f i ( x ) and /2(a;), there is a formula
H(VI) with Godel number h which strongly separates u/^h) —Ufz(h)
ftomuh(h)-wMk).

Exercise 7. Show that <5 has the Rosser fixed point property iff
the following condition holds (where by gnH[n] we mean the Godel
number of H[n]): For any r.e. relations Ri(x,y) and R<i(x,y], there

from
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is a formula H(VI) such that for all ra,

1. Ri(n,gn(H\n])) A ~ Ri(n,gn(H\n}}} =$• H[n] is provable in <S.
2. R2(n,gn(H[n]))h ~ J?!(n,flm(ir[7i])) => H[n] is refutable in 5.

§6. Uniform Incompletability. Now we prove

Theorem 5. // S is consistent, axiomatizable and has the Ros-
ser fixed point property, then S is uniformly incompletable.

Proof. Suppose that S is axiomatizable. It is then a routine matter
to verify that there is a recursive function f i ( x ) such that for all n,
W/j(n) is the set of provable formulas of Sn. For any number n, let
neg(n) be the Godel number of the expression ~ En. The function
neg(x) is recursive, and so by the iteration theorem applied to the
r.e. relation neg(x) € ^^(y)^ there is a recursive function f?(x} such
that for any n, ^f2(n) — x '• neg(x) € ^/j(n), and so W/2(n) is the set
of refutable formulas of Sn.

Now, suppose S satisfies the hypothesis. Take any n such that
Sn is consistent. Then the sets Wf2in) and W^/i(n)

 are disjoint, and
so there is a formula H(v\) such that H[n] 6 W/2(«) implies H[n]
is provable in 5, and H[n] e ^fi(n) implies H[n] is refutable in $.
And so

1. H[n] refutable in <$„ => H[n] provable in <S,
2. H[n] provable in Sn => H\n] refutable in <S.

If H[n] were provable in «Sn, then by (2), it would be refutable in
<S and refutable in Sn, and <Sn would be inconsistent. If H [n] were
refutable in «?„, then by (1) it would be provable in <S and provable
in Sn, so again Sn would be inconsistent. Since Sn is assumed consis-
tent, then H [n] is undecidable in <Sn. Hence also H(n) is undecidable
in Sn. And so S is uniformly incompletable.

By Theorem 4 and Theorem 5 we have

Theorem 6. If S is consistent, axiomatizable and semi-DSR, then
S is uniformly incompletable.

From Theorem 3(a) and Theorem 6 we have one of our principal
results.

Theorem 7. Every consistent axiomatizable effective Rosser system
for sets is uniformly incompletable.
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As a corollary we have

Theorem RS (Pour-El). Every consistent axiomatizable extension
of (R) is uniformly incompletable.

Discussion. Theorem 7 is a generalization of Th. RS which has the
advantage of being applicable not only to systems couched in the
language of first-order logic (as is the system (J?)) but to the more
abstract representation systems of T.F.S. (which do not involve the
logical connectives or quantifiers). In short, Theorem 7, unlike The-
orem Rs, is not a first-order theorem at all (though it is applicable to
first-order systems). Pour-El [1968] gave a very different generaliza-
tion of Theorem R3, which is essentially of a first-order nature. She
considered the smaller class of recursive functions known as primitive
recursive functions (cf. Kleene, Rogers, Boolos and Jeffrey, or virtu-
ally any standard treatment of Godel's theorem for a definition) and
proved the following result (which we will call Pour-El's Theorem):
If S is any consistent axiomatizable extension of ^4 and fis (cf. §7,
Ch. 0) in which all primitive recursive functions of one argument are
strongly definable, then S is uniformly incompletable. It is difficult
to compare the strength of her hypothesis with tluvt of our Th. 7.
We shall shortly prove another generalization of Theorem RS whose
hypothesis is apparently weaker then hers but which appears to be
also incomparable in strength with that of Theorem 7.

§7. The Weakened Putnam-Smullyan Conditions. We
are saying that a function f ( x ) is admissible in S if for every formula
H(v\), there is a formula G(v\) such that for every n, the sentence
G(n) = #(/(«)) is provable in S. [This notion of admissible, un-
like that of a function being strongly definable, does not involve the
quantifiers]. We proved (Ch. 0, Th. 11.1) that if f ( x ) is strongly
definable in <S, then it is admissible in 5. As a matter of fact, admis-
sibility is the only consequence of strong definability that we ever
used in any of our proofs so far. That is to say, in all theorems
following Th. 11.1, Ch. 0, if we replaced "strongly definable" by
"admissible", the results would still go through. In particular, the
Ehrenfeucht-Feferman theorem, the Putnam-Smullyan theorem and
its strengthened version in Chapter 7 all go through if we replace
"strongly definable" by the weaker, but more generally applicable
"admissible". [Indeed, in each of our proofs, we had to appeal to
Th. 11.1, Ch. 0 each time!]
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And now we shall say that «S satisfies the weakened Putnarn-
Smullyan conditions if S is a consistent axiomatizable Rosser sys-
tem for sets such that for every number ft, the function J(h,x) is
admissible in S.

We will prove

Theorem 8. If S satisfies the weakened Putnam-Smullyan condi-
tions, then S is uniformly incompletable.

To prove Theorem 8, we first need a strengthening of Theorem 5.
Let us say that S almost has the Rosser fixed point property if for
any recursive functions f i ( x ) and /2(#), there is a formula H(v\)
and a function <f(x) which is admissible in S and such that for any
n for which ^^(n) an<l w/2(n) are disjoint, the following conditions
hold:

1. H[if(n}} e Wh(n) => H[(p(ri)} is provable in S,
2. H[<f(n)] G W/2(n) =>• H[<p(n)] is refutable in S.

[Of course this condition is a weakening of the Rosser fixed point
property, since the identity function is obviously admissible in S.]

Now suppose S is consistent, axiomatizable and almost has the
Rosser fixed point property. Then it must be uniformly incom-
pletable by the following argument: We take /i(a;) and h(x) as
in the proof of Theorem 5, and we then take H(v\) and an admis-
sible function <p(x) satisfying (1) and (2) above (for the particular
functions f \ ( x ) and fo(x)). Then by an argument similar to part of
the proof of Theorem 5, we see that for any n for which <Sn is con-
sistent, the sentence H(<p(n)) is undecidable in Sn. But since y(a;)
is admissible in <S, there is a formula G(v\) such that for all n, the
sentence G(n) = H(<p(n)} is provable in S (and, hence, in every ex-
tension of <S), and so G(n) is undecidable in Sn (if Sn is consistent.)
And so we have

Theorem 5*. If S is consistent, axiomatizable and almost has the
Rosser fixed point property, then S is uniformly incompletable.

Now we can prove Theorem 8. Assume hypothesis. We will show
that S almost has the Rosser fixed point property and then by Th. 5*,
S is uniformly incompletable.

Given recursive functions f i ( x ) and /2(aQ, we let A\ be the set
of all numbers J(x,y) such that Ex[J(x,y)] € W/^j/) and we let A%
be the set of all numbers J(x,y) such that Ex[J(x,y)] 6 W/2(i/)-
Then there is a formula Eh(v\) that strongly separates AI — AI from
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AI — A\. Now, let n be any number for which w/^n) and UJf2(n) are

disjoint. Then,

1. Eh[J(h,n)] e W/l(B) =* Eh[J(h,n)] € W/l(n) - WA(n) =*>
(fr,n) € AI - A2 =» J5fe[J(fe,n)] is provable in S.

2. Similarly, Eh[J(h,n)] £ W/2(n) implies that ^[J(/i,n)] is
refutable in «?.

And so we take <p(x) = J(h,x). By hypothesis, <p(x] is admissible in
S. This concludes the proof.

Discussion. The hypothesis of Theorem 8 appears to be of incom-
parable strength with that of Theorem 7, but it also seems to be
weaker than Pour-El's hypothesis for the following reasons: It is a
well-known result of recursive function theory that every r.e. set is
the range of a primitive recursive function and, hence, if all primitive
recursive functions are definable in S, then all r.e. sets are enumer-
able in S (in the sense of §2, Ch. 0). Hence if S is an extension
of 0,4 and ^5, then S is a Rosser system for sets (cf. Separation
Lemma, §8, Ch. 0). Also, for any number /i, the function J(/i,a;) is a
primitive recursive function, and so any system satisfying Pour-El's
hypothesis also satisfies the hypothesis of Theorem 8.

From Theorem 8, of course, follows the weaker result.

Theorem 8°. If S is a consistent axiomatizable Rosser system for
sets in which all recursive functions of one argument are admissible,
then S is uniformly incompletable.

In some of the exercises that follow, we outline another proof of
the weaker Theorem 8°, because it brings to light some facts about
doubly generative pairs that are of interest on their own account.

Exercise 8. If in our definition of a system almost having the Rosser
fixed point property, we can replace "=>•" by "<->", then we will say
that S almost has the exact Rosser fixed point property. Using
Theorem S' of Chapter 7, prove that if S satisfies the hypothesis of
Theorem 8, then S almost has the exact Rosser fixed point property.

Exercise 9. Now for some facts about doubly generative pairs. Sup-
pose (Ai^Az) is D.G. Prove that for any recursive functions /i(x),
f\(x] and fi(x), there is a recursive function g(x) such that for all
n for which ^/j(n) an(i ^^(n) are disjoint,

1. g(n) e AI «-»• h(g(n)) € w/l(n);
2. g(n) £A2^ %(n)) € uhM.



154 Chapter XII. Uniform Godelization

[Hint: Let <f>(x,y) be a D.G. function for (Ai,A^). Then take a
recursive function t(y) such that for all i : u>t^ = h~l(uj{). Then
take g(x) = (t>(tf\x,tfax} and show that g(x) works.]

Exercise 10. Suppose h(x) is a recursive function that reduces a
D.G. pair (A\,A<2) to a pair (oti,^). Using Exercise 9, show that for
any recursive functions f i ( x ) and fz(x}, there is a recursive function
g(x) such that for any n for which ^f-i(n)

 an<i w/2(n) are disjoint,

(1) h(g(n}} G 01 <-> %(n)) G w/l(n);
(2) h(g(n)} e «2 ^- %(«)) € w, (n).

Exercise 11. Now show that if some D.G. pair (Ai,A%) is strongly
separable in <5 and if all recursive functions are admissible in <S,
then S almost has the Rosser fixed point property (in fact S has
the stronger property that there is a single formula H(VI) such that
for any recursive functions /i(x) and f i ( x ) , there is an admissible
function <p(x) such that for all n for which ^^(n) and <jj/2(n) are

disjoint, H[(p(n)] is in Wf^n)(Wft(n)) implies H[<f>(n)] is provable
(respectively refutable) in <S). [Theorem 8° then follows from this
and Th. 5*.l

IV. Finale

Now we shall prove the following two results (which are apparently
of incomparable strength).

Theorem 9. If S is consistent, axiomatizable and semi-DSR, then
S is an exact Rosser system for sets.

Theorem 10. IfS is consistent, axiomatizable and effectively semi-
DSR, then S is effectively an exact Rosser system for sets.

When we have proved Theorem 9, then by Theorem 3(a) we will
have

Theorem I. If S is consistent, axiomatizable and effectively a
Rosser system for sets, then S is an exact Rosser system for sets.

This is a strengthening of Shepherdson's exact separation theorem,
since any Rosser system for binary relations is effectively a Rosser
system for sets. Also, our proof of Theorem I yields a new proof of
Shepherdson's theorem which combines a variant of Shepherdson's
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argument with the use of the weak double recurson theorem (needed
for the proof of Theorem 3(a)).

When we have proved Theorem 10, then by Theorem 3*(a) we will
have the still stronger result.

Theorem I*. If S is consistent, axiomatizable and also effectively a
Rosser system for sets, then S is effectively an exact Rosser system
for sets.

Remarks. Just because a system is both an effective Rosser system
for sets and an exact Rosser system for sets, doesn't mean that it
must be effectively an exact Rosser system for sets. Thus Theorem I*
is indeed a substantial strengthening of Theorem I.

Now for the proofs.

Proof of Theorem 9: Suppose S is consistent, axiomatizable and
semi-DSR. Given disjoint sets A and B, we let Ri(x,y) and R^(x,y)
be the following r.e. relations:

Then by hypothes there is a formula Eh(v\) that strongly separates
x : (Ri(x,h)f\ ~ R2(x,h)) from x : (R2(x,h)A ~ Ri(x,h)). Then
for any n we have

1. [(n 6 A V Eh[n] is refutable) A ~ (n <E B V Eh[n] is provable)]
=>• Eh\n] is provable.

2. [(n € B V Eh[n] is provable) A ~ (n € A V Eh[n] is refutable)
=>• Eh\n\ is refutable.

Since A and B are disjoint and, by the assumption of consistency,
Eh[n] is not both provable and refutable, it follows from (1) and (2)
by prepositional logic that Eh[n] is provable iff n £ A, and refutable
iff n € B.

Remarks. It is of interest to compare the relations Ri(x,y) and
Ri(x,y] that we used with those of Shepherdson (x G A V Ey[a;,y]
is refutable; x € -B V Ey\x,y] is provable). His relations built a diag-
onalization right within them; ours did not, since the weak double
recursion theorem contained within it all the diagonalization that
was needed.

Proof of Theorem 10: Suppose that S is consistent and axiomatiz-
able and that S is effectively semi-DSR under h(x,y). The relation
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ux € wz V Ey\x\" is refutable, and the relation ux € wz V Ey[x}" is
provable are both r.e. (since S is axiomatizable). So by the iteration
theorem, there are recursive functions ti(z) and t%(z) such that for
all i

1. Rtl(i)(x,y) <-»• (a; € w,- V .£„[*] is refutable),
2. Rt2(t)(x,y) <-»• (a; € w,- V £y[z] is provable).

We take n(x,y) = /i(^i(a;),/2(j/))- Then for any i and j, E^^^(v\)
strongly separates x : (Rtl(i)(x,ir(i,j))h ~ ^2(_,-)(a;,7r(i,j))) from
x : (Rt2(j)(x,ir(i,j))/\ ~ R^^x^^J}}) in 5. Thus conditions (1)
and (2) of the proof of Theorem 9 hold when we replace "/i" by
"TT(Z,J)'', "A" by V'" and "5" by "w/'. And so if w,- and Uj are
disjoint, then E^itj)(vi) exactly separates w,- from Wj. Thus ?r(a;,j/)
is an exact Rosser function for <S.

Having proved Theorem 10, then by Theorem 3*(a), our proof of
Theorem I* is complete.

We note that Theorem I* and Theorem 3*(b) yield

Corollary. If a consistent axiomatizable system is effectively semi-
DSR, then it is effectively DSR.

And so we see that for a consistent axiomatizable system S, the
following four conditions are all equivalent:

(1) S is effectively a Rosser system for sets.
(2) <S is effectively semi-DSR.
(3) S is effectively an exact Rosser system for sets.
(4) S is effectively DSR.

In conclusion, let us summarize some results of Chapter 6 and this
Chapter with

Theorem ER. Every consistent axiomatizable effective Rosser sys-
tems for sets enjoys the following properties:

(1) The pair (P, J?) of its nuclei is completely E.I., doubly genera-
tive and doubly universal.

(2) S is uniformly incompletable.
(3) <S is effectively an exact Rosser system for sets.
(4) <5 effectively has the double sentential recursion property.
(5) S has the exact Rosser fixed point property.

This seems to be an appropriate resting place. Recursion theorems
and Shepherdson-type constructions have been two of our major
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tools. Many of the results we have proved about first-order systems
and recursion theory can be unified using the representation systems
of T.F.S.—Moreover, fixed point theorems in these areas can be fur-
ther unified with fixed point theorems in combinatory logic. This
is a topic unto itself and will be pursued in our companion volume
Diagonalization and Self-Reference.
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